The pathogenesis of Hirschsprung's disease (HSCR) is complex. Recently, it has been found that histone modifications can alter genetic susceptibility and play important roles in the proliferation, differentiation and migration of neural crest cells. H3K36 methylation plays a significant role in gene transcriptional activation and expression, but its pathogenic mechanism in HSCR has not yet been studied.
View Article and Find Full Text PDFAims: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness.
View Article and Find Full Text PDFObjective: This article aims to explore the diagnosis, molecular characteristics, treatment, and prognosis of epidermolysis bullosa with pyloric atresia (EB-PA).
Methods: The clinical manifestations, diagnosis and treatment, and genetic characteristics of a patient with EB-PA admitted to our hospital were analysed. The disease subtypes, concomitant abnormalities, molecular characteristics, and prognosis of patients with EB-PA were summarized by searching the EB-PA-related literature since 2011.
Background: METTL3, an mRNA mA methyltransferase, has been implicated in various steps of mRNA metabolism, such as stabilization, splicing, nuclear transportation, translation, and degradation. However, whether METTL3 dysregulation is involved in Hirschsprung disease (HSCR) development remains unclear. In this study, we preliminarily elucidated the role of METTL3 in HSCR and sought to identify the associated molecular mechanism.
View Article and Find Full Text PDFBackground: There are numerous published studies on the association between polymorphisms and susceptibility to Hirschsprung disease (HSCR). However, some of the results are inconsistent and the studies were conducted with small sample sizes. Therefore, we performed a meta-analysis to clarify the relationship.
View Article and Find Full Text PDFNanoscale Res Lett
October 2017
Copper nanowires have the potential to reach and even exceed the indium tin oxide performances as flexible transparent conductive electrodes. However, for a large-scale production, they need to be fabricated in a high-speed, low-cost way, without degrading the flexible substrate. One of the major bottlenecks resides in the post-treatment used to remove organic residues from the surface of the nanowires after forming the transparent electrode, which is necessary to obtain high optoelectronic performances.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2006
Chemical solution deposition (CSD) techniques were used to prepare lead zirconate (Zr) titanate (Ti) (PZT) thin films with Zr/Ti ratios of 30/70 and 52/48. Usually CSD processing is restricted to making crack-free, single-layer films of 70-nm thick, but modifications to the sol-gel process have permitted the fabrication of dense, crack-free, single layers up to 200 to 300 nm thick, which can be built-up into layers up to 3-microm thick. Thicker PZT films (> 2-microm single layer) can be produced by using a composite sol-gel/ceramic process.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2004
High-frequency, thickness mode resonators were fabricated using a 7 microm piezoelectric transducer (PZT) thick film that was produced using a modified composite ceramic sol-gel process. Initial studies dealt with the integration of the PZT thick film onto the substrate. Zirconium oxide (ZrO2) was selected as a diffusion barrier layer and gave good results when used in conjunction with silicon oxide (SiO2) as an etch stop layer.
View Article and Find Full Text PDF