Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions.
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress.
View Article and Find Full Text PDFOptical zoom systems have found widespread applications in fields such as security and mobile phone lenses. The theory of zoom lens design has also developed from the first order to the third order. To address the demands for large aperture, wide field, and aspheric surfaces, a zoom system design method based on high-order structural aberration coefficients is introduced.
View Article and Find Full Text PDFAs optical systems continue to advance, non-uniform rational B-spline (NURBS) surfaces increasingly being considered in asymmetric optical systems due to their localized control characteristics. However, the representation of NURBS surfaces has complicated the analysis of these systems, leading to a significant computational burden. To address this challenge, we propose an optimizing algorithm for imaging optical systems based on high-precision ray tracing of NURBS surfaces.
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies.
View Article and Find Full Text PDFImmunotherapy successfully complements traditional cancer treatment. However, primary and acquired resistance might limit efficacy. Reduced antigen presentation by MHC-I has been identified as potential resistance factor.
View Article and Find Full Text PDFRheumatoid arthritis, characterized by the abnormal proliferation of synovial cells and extensive macrophage infiltration, is a chronic inflammatory disease. Molecular hydrogen, known for its antioxidant properties, has shown promise in eliminating reactive oxygen species. However, the low solubility and bioavailability of hydrogen limit the effectiveness of this therapy.
View Article and Find Full Text PDFThe regulation of intracellular ionic homeostasis to trigger antigen-specific immune responses has attracted extensive interest in tumor therapy. In this study, we developed a dual-pathway nanoreactor, Au-CuSe@ZIF-8@P18 NPs (ACS-Z-P NPs), which targets danger-associated molecular patterns (DAMPs) and releases Zn and reactive oxygen species (ROS) within the tumor microenvironment (TME). Zn released from the metal-organic frameworks (MOFs) was deposited in the cytoplasm, leading to aberrant transcription levels of intracellular zinc-regulated proteins and DNA damage, thereby inducing pyroptosis and immunogenic cell death (ICD) dependent on caspase1/gasdermin D (GSDMD) pathway.
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (HO).
View Article and Find Full Text PDFMedicine (Baltimore)
September 2024
The programmed cell death (PCD) pathway removes functionally insignificant, infection-prone, or potentially tumorigenic cells, underscoring its important role in maintaining the stability of the internal environment and warding off cancer and a host of other diseases. PCD includes various forms, such as apoptosis, copper death, iron death, and cellular pyroptosis. However, emerging solid-state electron-mediated Z-scheme heterostructured semiconductor nanomaterials with high electron-hole (e-h) separation as a new method for inducing PCD have not been well studied.
View Article and Find Full Text PDFThe inefficient delivery of herbicides causes unpleasant side effects on the ecological environment. Protoporphyrinogen oxidase (PPO)-inhibiting herbicides rely on the presence of external light to exert the activities and thus their performance in the field is extremely susceptible to the light environment. Here, taking acifluorfen (ACI) as a model PPO-inhibiting herbicide to enhance efficacy by boosting the utilization rate of sunlight, amphiphilic cationic CDs (CPC-CDs) from cetylpyridinium chloride (CPC) as a precursor, is first prepared as a supplementary light source generator, and subsequently co-assembled with ACI through non-covalent bond interactions to obtain the stable fluorescent nanoparticles (ACI@CPC-CDs).
View Article and Find Full Text PDFSpatial genomic technologies include imaging- and sequencing-based methods (1-3). An emerging subcategory of sequencing-based methods relies on a surface coated with coordinate-associated DNA barcodes, which are leveraged to tag endogenous nucleic acids or cells in an overlaid tissue section (4-7). However, the physical registration of DNA barcodes to spatial coordinates is challenging, necessitating either high density printing of coordinate-specific oligonucleotides or sequencing/probing of randomly deposited, oligonucleotide-bearing beads.
View Article and Find Full Text PDFSalivary collection (SC) following surgery for oral cancer represents an underreported and unrecognized complication. Our study aimed to evaluate the efficacy of parotideomasseteric fascia flap (PFF) in preventing postoperative SC, comparing its effectiveness with other conventional methods. Between November 2019 and January 2023, 221 patients diagnosed with oral squamous cell carcinoma (OSCC) undergoing wide tumor ablation and neck dissection at Xiangya Hospital were included in the study.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2024
The off-target loss of pesticide formulations caused by volatilization and leaching has reduced effective utilization and increased risks to the ecological environment and human health. Self-assembly of pesticides has been widely concerned due to the improved bioactivity and environmental compatibility. Herbicidal ionic liquids (HILs) could effectively decrease off-target loss and increase efficacy and environmental safety by improving the physicochemical properties of herbicides.
View Article and Find Full Text PDFFront Public Health
July 2024
Background: Healthy aging is crucial to the quality of life of older adults, of which mental health is an essential part. Physical exercise strongly affects their mental health and can alleviate psychological problems to a certain extent. Nevertheless, the correlation between physical exercise and the mental health of older adults individuals, as well as the underlying mechanism by which physical exercise impacts mental health, remains rather ambiguous.
View Article and Find Full Text PDFThis comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response.
View Article and Find Full Text PDFThe ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb in the batch bioreactor (efficiency: 98 %).
View Article and Find Full Text PDFBackground: Fever is one of the most common clinical symptoms of respiratory diseases in children. Once the child has a fever, parents and caregivers are mainly concerned that the child may have a febrile convulsion. A lack of cognitive ability not only leads to anxiety but also aggravates or delays the time of children's medical treatment and even seriously affects the prognosis because of improper management of fever patients.
View Article and Find Full Text PDFParecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays.
View Article and Find Full Text PDFNanoformulations of pesticides are an effective way to increase utilization efficiency and alleviate the adverse impacts on the environments caused by conventional pesticide formulations. However, the complex preparation process, high cost, and potential environmental risk of nanocarriers severely restricted practical applications of carrier-based pesticide nanoformulations in agriculture. Herein, carrier-free self-assembled nanoparticles (FHA-PRO NPs) based on fenhexamid (FHA) and prochloraz (PRO) were developed by a facile co-assembly strategy to improve utilization efficiency and reduce toxicity to aquatic organism of pesticides.
View Article and Find Full Text PDF