Marked hydration changes occur during the self-assembly of the melittin protein tetramer in water. Hydrophobicity induces a drying transition in the gap between simple sufficiently large (more than 1 nm(2)) strongly hydrophobic surfaces as they approach each other, resulting in the subsequent collapse of the system, as well as a depletion of water next to single surfaces. Here we investigate whether the hydrophobic induced collapse of multidomain proteins or the formation of protein oligimers exhibits a similar drying transition.
View Article and Find Full Text PDFWe performed molecular dynamics simulations of the collapse of a two-domain protein, the BphC enzyme, into a globular structure to examine how water molecules mediate hydrophobic collapse of proteins. In the interdomain region, liquid water persists with a density 10 to 15% lower than in the bulk, even at small domain separations. Water depletion and hydrophobic collapse occur on a nanosecond time scale, which is two orders of magnitude slower than that found in the collapse of idealized paraffin-like plates.
View Article and Find Full Text PDF