IEEE Trans Neural Syst Rehabil Eng
January 2024
Adaptive compliance control is critical for rehabilitation robots to cope with the varying rehabilitation needs and enhance training safety. This article presents a trajectory deformation-based multi-modal adaptive compliance control strategy (TD-MACCS) for a wearable lower limb rehabilitation robot (WLLRR), which includes a high-level trajectory planner and a low-level position controller. Dynamic motion primitives (DMPs) and a trajectory deformation algorithm (TDA) are integrated into the high-level trajectory planner, generating multi-joint synchronized desired trajectories through physical human-robot interaction (pHRI).
View Article and Find Full Text PDFIEEE Trans Biomed Eng
June 2023
Compliance control is crucial for physical human-robot interaction, which can enhance the safety and comfort of robot-assisted rehabilitation. In this study, we designed a spatiotemporal compliance control strategy for a new self-designed wearable lower limb rehabilitation robot (WLLRR), allowing the users to regulate the spatiotemporal characteristics of their motion. The high-level trajectory planner consists of a trajectory generator, an interaction torque estimator, and a gait speed adaptive regulator, which can provide spatial and temporal compliance for the WLLRR.
View Article and Find Full Text PDFLower limb rehabilitation robots (LLRRs) have shown promising potential in assisting hemiplegic patients to recover their motor function. During LLRR-aided rehabilitation, the dynamic uncertainties due to human-robot coupling, model uncertainties, and external disturbances, make it challenging to achieve high accuracy and robustness in trajectory tracking. In this study, we design a triple-step controller with linear active disturbance rejection control (TSC-LADRC) for a LLRR, including the steady-state control, feedforward control, and feedback control.
View Article and Find Full Text PDF