A facile and green method for preparation of gold/palladium (Au/Pd) bimetallic nanoparticles interleaved reduced graphene oxide (rGO) composite was presented. One-step electroreduction of Au/Pd precursors and graphene oxide synergistically produced a multilayered and well-structured nanohybrid on glassy carbon electrode, which was explored as a highly efficient electrocatalyst. This operation is easy and controllable, as compared with time-consuming and procedure-tedious hydrothermal synthesis.
View Article and Find Full Text PDFPhosphopantetheine transferases (PPTases) can be used to efficiently prepare site-specific antibody-drug conjugates (ADCs) by enzymatically coupling coenzyme A (CoA)-linker payloads to 11-12 amino acid peptide substrates inserted into antibodies. Here, a two-step strategy is established wherein in a first step, CoA analogs with various bioorthogonal reactivities are enzymatically installed on the antibody for chemical conjugation with a cytotoxic payload in a second step. Because of the high structural similarity of these CoA analogs to the natural PPTase substrate CoA-SH, the first step proceeds very efficiently and enables the use of peptide tags as short as 6 amino acids compared to the 11-12 amino acids required for efficient one-step coupling of the payload molecule.
View Article and Find Full Text PDFPost-translational modification catalyzed by phosphopantetheinyl transferases (PPTases) has previously been used to site-specifically label proteins with structurally diverse molecules. PPTase catalysis results in covalent modification of a serine residue in acyl/peptidyl carrier proteins and their surrogate substrates which are typically fused to the N- or C-terminus. To test the utility of PPTases for preparing antibody-drug conjugates (ADCs), we inserted 11 and 12-mer PPTase substrate sequences at 110 constant region loop positions of trastuzumab.
View Article and Find Full Text PDFAlthough IFN-alpha forms the foundation of therapy for chronic hepatitis C, only a minority of patients has a sustained response to IFN-alpha alone. The antiviral activities of IFN-alpha formed the rationale for its use in viral hepatitis. However, IFN-alpha and the other Type I IFNs are also pleiotropic immune regulators.
View Article and Find Full Text PDFHuman acidic mammalian chitinase (AMCase), a member of the family 18 glycosyl hydrolases, is one of the important proteins involved in Th2-mediated inflammation and has been implicated in asthma and allergic diseases. Inhibition of AMCase results in decreased airway inflammation and airway hyper-responsiveness in a mouse asthma model, suggesting that the AMCase activity is a part of the mechanism of Th2 cytokine-driven inflammatory response in asthma. In this paper, we report the first detailed kinetic characterization of recombinant human AMCase.
View Article and Find Full Text PDF