Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment.
View Article and Find Full Text PDFTo clarify the potential utility of targeting GRK2/3-mediated desensitization as a means of manipulating airway smooth muscle (ASM) contractile state, we assessed the specificity of GRK2/3 regulation of procontractile and relaxant G-protein-coupled receptors in ASM. Functional domains of GRK2/3 were stably expressed, or siRNA-mediated GRK2/3 knockdown was performed, in human ASM cultures, and agonist-induced signaling was assessed. Regulation of contraction of murine tracheal rings expressing GRK2 C terminus was also assessed.
View Article and Find Full Text PDFA-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules that can compartmentalize cAMP signaling transduced by β2-adrenergic receptors (β(2)ARs); such compartmentalization ensures speed and fidelity of cAMP signaling and effects on cell function. This study aimed to assess the role of AKAPs in regulating global and compartmentalized β(2)AR signaling in human airway smooth muscle (ASM). Transcriptome and proteomic analyses were used to characterize AKAP expression in ASM.
View Article and Find Full Text PDFInhaled β-agonists are effective airway smooth muscle (ASM)-relaxing agents that help reverse bronchoconstriction in asthma, but their ability to affect the aberrant ASM growth that also occurs with asthma is poorly understood. β-Agonists exhibit PKA-dependent antimitogenic effects in several cell types. However, recent studies suggest that Epac, and not PKA, mediates the antimitogenic effect of cAMP in both ASM and fibroblasts.
View Article and Find Full Text PDFAlthough G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR).
View Article and Find Full Text PDFExcessive smooth muscle growth occurs within the context of inflammation associated with certain vascular and airway diseases. The inflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) have been shown previously to inhibit mitogen-stimulated smooth muscle growth through a mechanism presumed to be dependent on the induction of cyclooxygenase-2, prostaglandins, and activation of the cAMP-dependent protein kinase (PKA). Using both molecular and pharmacological strategies, we demonstrate that the mitogenic effects of IL-1beta and TNF-alpha on cultured human airway smooth muscle (ASM) cells are tightly regulated by PKA activity.
View Article and Find Full Text PDF