Accurate histopathological subtype prediction is clinically significant for cancer diagnosis and tumor microenvironment analysis. However, achieving accurate histopathological subtype prediction is a challenging task due to (1) instance-level discrimination of histopathological images, (2) low inter-class and large intra-class variances among histopathological images in their shape and chromatin texture, and (3) heterogeneous feature distribution over different images. In this paper, we formulate subtype prediction as fine-grained representation learning and propose a novel multi-instance selective transformer (MIST) framework, effectively achieving accurate histopathological subtype prediction.
View Article and Find Full Text PDF