Publications by authors named "Huanbai Wang"

Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model.

View Article and Find Full Text PDF

αO-conotoxin GeXIVA[1,2] was isolated in our laboratory from a snail native to the South China Sea, and is a novel, nonaddictive, intramuscularly administered analgesic targeting the α9α10 nicotinic acetylcholine receptor (nAChR) with an IC of 4.61 nM. However, its pharmacokinetics and related mechanisms underlying the analgesic effect remain unknown.

View Article and Find Full Text PDF

Vesicular glutamate transporter 2 (VGLUT2)-which uptakes glutamate into presynaptic vesicles-is a fundamental component of the glutamate neurotransmitter system. Although several lines of evidence from genetically modified mice suggest a possible association of VGLUT2 with neuropathic pain, the specific role of VGLUT2 in the spinal cord during neuropathic pain, and its regulatory mechanism remain elusive. In this study, we report that spared nerve injury induced an upregulation of VGLUT2 in the spinal cord, and intrathecal administration of small hairpin RNAs (shRNA) against VGLUT2 before or after surgery attenuated mechanical allodynia, and pathologically-enhanced glutamate release.

View Article and Find Full Text PDF

Oxaliplatin is a third-generation platinum drug and is widely used as a first-line therapy for the treatment of colorectal cancer (CRC). However, a large number of patients receiving oxaliplatin develop dose-limiting painful neuropathy. Here, we report that αO-conotoxin GeXIVA[1,2], a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype, can relieve and reverse oxaliplatin-induced mechanical and cold allodynia after single and repeated intramuscular (IM) injections in rats.

View Article and Find Full Text PDF