Publications by authors named "Huan-Jun Jiao"

Considering the significance and urgency for the recognition and sensing of anions specifically, especially those of biological relevance, herein, a simple and reliable colorimetric iodide sensor that based on pH-dependent interaction of silver nanoparticles (AgNPs) and H2O2 was developed. In acidic medium, AgNPs reacted with H2O2 to produce Ag(+) and powerful oxidizing species. The powerful oxidizing species could etch AgNPs seriously.

View Article and Find Full Text PDF

A novel switchable sensor was developed for the determination of phosphate based on Ce(3+) induced aggregation and phosphate triggered disaggregation of cysteine (Cys)-capped CdS quantum dots (QDs) and silver nanoparticles (AgNPs). The rare earth metal Ce(3+) could aggregate a mixture of QDs and AgNPs, which induced electron or energy transfer between CdS QDs and AgNPs and serious fluorescence quenching. However, phosphate dissociated the formed aggregation of CdS QDs and AgNPs, restoring the enhanced fluorescence of Cys-capped CdS triggered by AgNPs.

View Article and Find Full Text PDF

An innovative and versatile functional colorimetric sensor for melamine (MA) and H(2)O(2) was developed with simplicity, excellent selectivity and ultrasensitivity. The detection mechanism was based on the "oxidative etching-aggregation" of silver nanoparticles (AgNPs) by the cooperation effect of MA and electron acceptors such as H(2)O(2), ozone or Fe(NO(3))(3). The detection limits of this method for MA could reach as low as 0.

View Article and Find Full Text PDF

A sensitive and simple method for the determination of melamine (MA) was developed based on the fluorescence enhancement effect of MA for thioglycolic acid-capped (TGA-capped) CdS quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 2.0 × 10(-9) to 5.

View Article and Find Full Text PDF

The method provides an innovative dual functional sensors for mercury (II) ions and hydrogen peroxide. The addition of H(2)O(2) to the mixture of silver nanoparticles (AgNPs) and Hg(2+) induced color changes of the solution within several seconds even at 2.0 nM Hg(2+).

View Article and Find Full Text PDF

A novel colorimetric thiourea (TU) sensor was developed utilizing citrate modified silver nanoparticles (AgNPs). The introduction of TU reduced the overall surface charges of the AgNPs, resulting in aggregation of AgNPs and a colorimetric response correlating with the concentration of TU. The detection of TU could be realized within 2 min, with an ultralow detection limit of 0.

View Article and Find Full Text PDF