Publications by authors named "Huamin Xu"

Up to 45% of patients surviving from transient global cerebral ischemia (GCI) after cardiac arrest develop post-global cerebral ischemia depression (PGCID), but how to treat PGCID is clinically unknown. Here we find that cannabinoid type-1 receptor (CBR) antagonists, CBR knockout and endocannabinoid (eCB) synthesis inhibition block acute stress-induced PGCID. Application of acute stress to GCI mice increases CBR activity from ventromedial prefrontal cortical (vmPFC) terminals synapsing with the basolateral amygdala (BLA) neurons, indicating the involvement of increased vmPFC-BLA synaptic eCB signaling in PGCID induction.

View Article and Find Full Text PDF

Background: There is variability in the structure of junior doctors' knowledge of humanistic medicine. The level of residents' emotional intelligence affects their professional development and the doctor-patient relationship. Currently, there is a paucity of research examining the humanistic competence and emotional intelligence of medical residents, both domestically and internationally.

View Article and Find Full Text PDF

Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies.

View Article and Find Full Text PDF

Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD.

View Article and Find Full Text PDF

Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD.

View Article and Find Full Text PDF

Impaired iron homeostasis has been proven to be one of the critical contributors to the pathology of Parkinson's disease (PD). Ferritin is considered an intracellular protein responsible for storing cytosolic iron. Recent studies have found that ferritin can be secreted from cells independent of the classical endoplasmic reticulum-Golgi system.

View Article and Find Full Text PDF

Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated.

View Article and Find Full Text PDF

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects.

View Article and Find Full Text PDF

Iron deposition is one of the key factors in the etiology of Parkinson's disease (PD). Iron-free-apoferritin has the ability to store iron by combining with a ferric hydroxide-phosphate compound to form ferritin. In this study, we investigated the role of apoferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice models and elucidated the possible underlying mechanisms.

View Article and Find Full Text PDF

Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an important role in maintaining iron homeostasis. Recently, the discovery of extracellular ferritin and ferritin in exosomes indicates that ferritin might be not only an iron storage protein within the cell, but might also be an important factor in the regulation of tissue and body iron homeostasis.

View Article and Find Full Text PDF

Nedd4 family interacting protein 1 (Ndfip1) is an adaptor of Nedd4-family ubiquitin ligases. Experimental results showed that Ndfip1 had a potential neuroprotective effect in neurology diseases. However, the neuroprotective effect and the underlying mechanisms of Ndfip1 in Parkinson's disease (PD) have not yet been fully elucidated.

View Article and Find Full Text PDF

Background: Rearranged during transfection (RET) has been proven to be a tumorigenic target in non-small cell lung cancers (NSCLCs). In RET-rearranged NSCLCs, molecular features and their impact on prognosis were not well illustrated, and the activity of mainstay therapeutics has not currently been well compared.

Methods: Patients diagnosed with NSCLCs with RET rearrangements were analyzed for concomitant mutations, tumor mutation burden (TMB), PD-L1 expression, T cell receptor repertoire and clinical outcomes with chemotherapy, immune checkpoint inhibitors (ICIs), and multikinase inhibitors (MKIs).

View Article and Find Full Text PDF
Article Synopsis
  • Osimertinib is a medicine used for lung cancer patients, especially those who have developed resistance to other treatments. Some patients respond better than others.
  • Researchers studied lung cancer patients who stopped responding to osimertinib to understand why.
  • They found various genetic changes in the tumors that made the medicine less effective, showing that there are many different reasons why resistance occurs in patients.
View Article and Find Full Text PDF

Rosmarinic acid (RA) is a naturally occurring polyphenolic compound. In this study, we demonstrated that RA could protect against the degeneration of the nigrostriatal dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). In addition, RA could inhibit MPTP-induced decrease of superoxide dismutase (SOD) and tyrosine hydroxylase (TH) and increase in nigral iron content.

View Article and Find Full Text PDF

Increasing evidence has confirmed that nigral iron accumulation and activation of NMDA receptors (NRs) contribute to the neurodegeneration of dopamine (DA) neurons in Parkinson's disease (PD). Earlier work indicated that activation of NRs participated in iron metabolism in the hippocampus. However, the relationship between activation of NRs and iron accumulation in DA neurons of the substantia nigra in PD was unknown.

View Article and Find Full Text PDF

It is now increasingly appreciated that glial cells play a critical role in the regulation of iron homeostasis. Impairment of these properties might lead to dysfunction of iron metabolism and neurodegeneration of neurons. We have previously shown that dysfunction of glia could cause iron deposit and enhance iron-induced degeneration of dopamine (DA) neurons in Parkinson's disease (PD).

View Article and Find Full Text PDF

Biometal dyshomeostasis and toxic metal accumulation are common features in many neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. The neurotoxic effects of metal imbalance are generally associated with reduced enzymatic activities, elevated protein aggregation and oxidative stress in the central nervous system, in which a cascade of events lead to cell death and neurodegeneration. Although the links between biometal imbalance and neurodegenerative disorders remain elusive, a major class of endogenous proteins involved in metal transport has been receiving increasing attention over recent decades.

View Article and Find Full Text PDF

Both iron dyshomeostasis and N-methyl-D-aspartate receptors (NMDARs)-mediated neurotoxicity have been shown to have an important role in neurological diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence proved that activation of NMDARs could promote iron overload and iron-induced neurotoxicity by enhancing iron importer divalent metal transporter 1 (DMT1)-mediated iron uptake and iron releasing from lysosome. Also, iron overload could regulate NMDARs-mediated synaptic transmission.

View Article and Find Full Text PDF

Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson's disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD.

View Article and Find Full Text PDF

Particularly interesting new cysteine-histidine-rich protein (PINCH) is a LIM-domain-only adaptor that plays important roles in cytoskeletal organization and extracellular matrix adhesion, migration, proliferation and survival. Mammalian cells have two functional PINCH proteins, PINCH1 and PINCH2. PINCH not only binds to Nck2 and engages in the signaling of growth factor receptors, but also forms a ternary complex with ILK and parvin (IPP complex).

View Article and Find Full Text PDF

A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD.

View Article and Find Full Text PDF

Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson's disease model in the rats.

View Article and Find Full Text PDF