Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn.
View Article and Find Full Text PDFPhaeocystis is a globally distributed Prymnesiophyte genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colony bloom stages in the subtropical Beibu Gulf using a metaproteomic approach.
View Article and Find Full Text PDFThis work investigated levels of PAHs and HMs in fourteen species from seven genera of scleractinian corals, adjacent sediments, and surface seawater in Hainan, China. The sources of contaminations were analyzed as well. The results showed that scleractinian corals had a relatively higher bioaccumulation capacity for PAHs from sediments than for HMs.
View Article and Find Full Text PDFPhaeocystis globosa is a major causative agent of harmful algal blooms in the global ocean, featuring a complex polymorphic life cycle alternating between free-living solitary cells and colonial cells. Colony is the dominant morphotype during P. globosa bloom.
View Article and Find Full Text PDFThis study investigated polycyclic aromatic hydrocarbons (PAHs) content in corals (Acropora sp.), surficial sediments, and surface seawater, and heavy metals (HMs) contents in corals and sediments from Dazhou Island, Hainan, China. Concentrations of PAHs in seawater and sediment seasonally ranged from 191.
View Article and Find Full Text PDFCoral embryos are a critical and sensitive period for the early growth and development of coral. Benzo(a)pyrene (BaP) is widely distributed in the ocean and has strong toxicity, but there is little information on the toxic effects to coral embryos exposed to this widespread environmental contaminant. Thus, in this study, we utilized the Illumina Hiseq™ 4000 platform to explore the gene response of Acropora hyacinthus embryos under the BaP stress.
View Article and Find Full Text PDFCorals especially the reef-building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. A robust and versatile protein extraction protocol is required for coral proteomics.
View Article and Find Full Text PDFBull Environ Contam Toxicol
May 2017
Research on the kinetics of Benzo[a]pyrene (B[a]P) bioaccumulation in the clam Pinctada martensii and mussel Perna viridis showed that the initial rate of uptake was directly related to the PAH concentrations in the ambient environment. The uptake and depuration rate constants were different at the four B[a]P exposure levels, which indicated that the toxicokinetic rate constants mainly depended on the exposure levels of pollutants to the environment. In addition, the uptake rate constants of B[a]P were higher than the depuration rate constants in the entire experiment.
View Article and Find Full Text PDFThe study investigated the occurrence of polycyclic aromatic hydrocarbons (PAHs) in the surface sediment from eleven sites in Yangpu Bay, China in December 2013 (winter) and July 2014 (summer). The 16 US EPA priority PAHs were found in the range of 1583.2-5701.
View Article and Find Full Text PDF