CRISPR base editors are powerful tools for large-scale mutagenesis studies. This kind of approach can elucidate the mechanism of action of compounds, a key process in drug discovery. Here, we explore the utility of base editors in an early drug discovery context focusing on G-protein coupled receptors.
View Article and Find Full Text PDFThe mechanisms by which prenatal immune activation increase the risk for neuropsychiatric disorders are unclear. Here, we generated developmental cortical interneurons (cINs)-which are known to be affected in schizophrenia (SCZ) when matured-from induced pluripotent stem cells (iPSCs) derived from healthy controls (HCs) and individuals with SCZ and co-cultured them with or without activated microglia. Co-culture with activated microglia disturbed metabolic pathways, as indicated by unbiased transcriptome analyses, and impaired mitochondrial function, arborization, synapse formation and synaptic GABA release.
View Article and Find Full Text PDFThe Genotype-Tissue Expression (GTEx) project has identified expression and splicing quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. However, the functional characterization of these QTLs has been limited by the heterogeneous cellular composition of GTEx tissue samples. We mapped interactions between computational estimates of cell type abundance and genotype to identify cell type-interaction QTLs for seven cell types and show that cell type-interaction expression QTLs (eQTLs) provide finer resolution to tissue specificity than bulk tissue cis-eQTLs.
View Article and Find Full Text PDFWe generated cortical interneurons (cINs) from induced pluripotent stem cells derived from 14 healthy controls and 14 subjects with schizophrenia. Both healthy control cINs and schizophrenia cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, schizophrenia cINs had dysregulated expression of protocadherin genes, which lie within documented schizophrenia loci.
View Article and Find Full Text PDFGenome-wide association studies have identified 108 schizophrenia risk loci, but biological mechanisms for individual loci are largely unknown. Using developmental, genetic and illness-based RNA sequencing expression analysis in human brain, we characterized the human brain transcriptome around these loci and found enrichment for developmentally regulated genes with novel examples of shifting isoform usage across pre- and postnatal life. We found widespread expression quantitative trait loci (eQTLs), including many with transcript specificity and previously unannotated sequence that were independently replicated.
View Article and Find Full Text PDFWe apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis-eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40-80%).
View Article and Find Full Text PDFRare monogenic diseases affect millions worldwide; although over 4500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases.
View Article and Find Full Text PDFOncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma.
View Article and Find Full Text PDFThe CD33 single-nucleotide polymorphism (SNP) rs3865444 has been associated with the risk of Alzheimer's disease (AD). Rs3865444 is in linkage disequilibrium with rs12459419 which has been associated with efficacy of an acute myeloid leukemia (AML) chemotherapeutic agent based on a CD33 antibody. We seek to evaluate the extent to which CD33 genetics in AD and AML can inform one another and advance human disease therapy.
View Article and Find Full Text PDFDendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs.
View Article and Find Full Text PDFWe show that the VEGF receptor neuropilin-2 (NRP2) is associated with high-grade, PTEN-null prostate cancer and that its expression in tumor cells is induced by PTEN loss as a consequence of c-Jun activation. VEGF/NRP2 signaling represses insulin-like growth factor-1 receptor (IGF-IR) expression and signaling, and the mechanism involves Bmi-1-mediated transcriptional repression of the IGF-IR. This mechanism has significant functional and therapeutic implications that were evaluated.
View Article and Find Full Text PDFHypoxia-inducible factor-1α (HIF1α), a master transcriptional regulator of the cellular and systemic hypoxia response, is essential for the maintenance of self-renewal capacity of normal HSCs. It is still unknown whether HIF1α has a role in survival regulation of leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). Using a mouse model of CML, here we report that HIF1α plays a crucial role in survival maintenance of LSCs.
View Article and Find Full Text PDF