Publications by authors named "Huakun Li"

Phase-sensitive Fourier-domain optical coherence tomography (FD-OCT) enables , label-free imaging of cellular movements with detection sensitivity down to the nanometer scale, and it is widely employed in emerging functional imaging modalities, such as optoretinography (ORG), Doppler OCT, and optical coherence elastography. However, when imaging tissue dynamics , inter-frame displacement introduces decorrelation noise that compromises motion detection performance, particularly in terms of sensitivity and accuracy. Here, we demonstrate that the displacement-related decorrelation noise in FD-OCT can be accurately corrected by restoring the initial sampling points using our proposed Phase-Restoring Subpixel Image Registration (PRESIR) method.

View Article and Find Full Text PDF

Phototransduction involves changes in concentration of ions and other solutes within photoreceptors and in subretinal space, which affect osmotic pressure and the associated water flow. Corresponding expansion and contraction of cellular layers can be imaged using optoretinography (ORG), based on phase-resolved optical coherence tomography (OCT). Until now, ORG could reliably detect only photoisomerization and phototransduction in photoreceptors, primarily in cones under bright stimuli.

View Article and Find Full Text PDF

Background: Angiogenesis is closely associated with tumor development and progression. Endoscopic optical coherence tomography angiography (OCTA) enables rapid inspection of mucosal 3D vasculature of inner organs in the early-stage tumor diagnosis; however, it is limited by instabilities of the optical signal and beam scanning.

Methods: In the phase-unstable swept source OCTA (SS-OCTA), amplitude decorrelation was used to compute the motion-induced changes as motion contrast.

View Article and Find Full Text PDF

In this study, we investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo by analyzing the depth attenuation of backscattered light under the guidance of OCT angiography (OCTA) vascular mapping, and then its correlation to the BGC was further investigated. The optical attenuation of the blood components presented a more reliable correlation to BGC than that of the background tissues.

View Article and Find Full Text PDF

Background: Vascular quantitative metrics have been widely used in the preclinical studies and clinical applications (e.g., the diagnosis and treatment of port wine stain, PWS), which require accurate vessel segmentation.

View Article and Find Full Text PDF

Motion contrast optical coherence tomography angiography (OCTA) entails a precise identification of dynamic flow signals from the static background, but an intermediate region with voxels exhibiting a mixed distribution of dynamic and static scatterers is almost inevitable in practice, which degrades the vascular contrast and connectivity. In this work, the static-dynamic intermediate region was pre-defined according to the asymptotic relation between inverse signal-to-noise ratio (iSNR) and decorrelation, which was theoretically derived for signals with different flow rates based on a multi-variate time series (MVTS) model. Then the ambiguous voxels in the intermediate region were further differentiated using a shape mask with adaptive threshold.

View Article and Find Full Text PDF

Complex decorrelation-based OCT angiography (OCTA) has the potential for monitoring hemodynamic activities in a label-free, high-resolution, and quantitative manner. To improve the measurement dynamic range and uncertainty of blood flow, an adaptive spatial-temporal (ST) kernel was proposed for decorrelation estimation and it was validated through a theoretical simulation and experimental measurements. The ensemble size in the decorrelation computation was effectively enlarged by collecting samples of the phasor pair in both the spatial and temporal dimensions.

View Article and Find Full Text PDF