Publications by authors named "Huajun Yan"

The purpose of this study is to estimate the bond strength between steel rebars and concrete using machine learning (ML) algorithms with Bayesian optimization (BO). It is important to conduct beam tests to determine the bond strength since it is affected by stress fields. A machine learning approach for bond strength based on 401 beam tests with six impact factors is presented in this paper.

View Article and Find Full Text PDF
Article Synopsis
  • A Zr-6Al-0.1B alloy is created through hot-pressing sintering and its thermal deformation behavior is studied under various conditions of temperature and strain rate.
  • During initial thermal deformation, stress quickly rises with strain until it peaks, then decreases due to softening effects, indicating that the material is sensitive to temperature and strain rates.
  • Microstructure changes show that higher strain rates enhance grain refinement, but excessive strain rates or high temperatures may cause defects, suggesting a balance is needed for optimal material properties.
View Article and Find Full Text PDF

The high-temperature deformation behavior of Q345 steel is detected by a Gleeble-3800 thermal simulator. The Arrhenius constitutive equation for high-temperature flow stress and the dynamic recrystallization model are constructed. With the secondary development technology, customized modifications are made on existing Deform-3D software.

View Article and Find Full Text PDF

Purpose: The aim of this study is to investigate the inhibition of cancer growth by pterostilbene through Metastasis-Associated Protein 1 (MTA1) and the histone deacetylase 1 (HDAC1) complex in hepatocellular carcinoma (HCC).

Methods: We investigate the antitumor effects of pterostilbene (PTER) in HCC. The SMMC-7721 hepatoma cell line was cultured and treated with PTER for different time depending on the experiment.

View Article and Find Full Text PDF

Oncogenic RAS expression occurs in up to 40% of multiple myeloma (MM) cases and correlates with aggressive disease. Since activated RAS induces cyclooxygenase-2 (cox-2) expression in other tumor models, we tested a role for cox-2 in mutant RAS-containing MM cells. We used the ANBL-6 isogenic MM cell lines in which the IL-6-dependent parental line becomes cytokine independent following transfection with mutated N-RAS or K-RAS.

View Article and Find Full Text PDF

Mammalian target of rapamycin (mTOR) inhibitors curtail cap-dependent translation. However, they can also induce post-translational modifications of proteins. We assessed both effects to understand the mechanism by which mTOR inhibitors like rapamycin sensitize multiple myeloma cells to dexamethasone-induced apoptosis.

View Article and Find Full Text PDF

Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/AKT activation.

View Article and Find Full Text PDF

In vitro studies indicate the therapeutic potential of mTOR inhibitors in treating multiple myeloma. To provide further support for this potential, we used the rapamycin analog CCI-779 in a myeloma xenograft model. CCI-779, given as 10 intraperitoneal injections, induced significant dose-dependent, antitumor responses against subcutaneous growth of 8226, OPM-2, and U266 cell lines.

View Article and Find Full Text PDF

The IL-6-induced activation of the phosphatidylinositol-3' kinase (PI3-K)/AKT cascade in multiple myeloma (MM) cells is critical for tumor cell proliferation and viability. Since the IL-6 receptor does not contain binding sites for the p85 regulatory portion of PI3-K, intermediate molecules must play a role. Coimmunoprecipitation studies in MM cell lines demonstrated the IL-6-induced formation of two independent PI3-K-containing complexes: one containing p21 RAS but not STAT-3 and a second containing STAT-3 but not RAS.

View Article and Find Full Text PDF

Lozenge (Lz) is a multifunctional transcription factor that is activated in a pool of pluripotent cells at the beginning of a wave of morphogenesis during Drosophila eye development. Lozenge belongs to the Runx class of transcription factors that includes the mammalian proteins AML1, Runx 2, and Runx 3. These proteins allow a tissue-specific precursor population of cells to attain multiple terminally differentiated fates.

View Article and Find Full Text PDF