Publications by authors named "Huaiyu Mi"

Unlabelled: A polygenic risk score (PRS) is used to quantify the combined disease risk of many genetic variants. For complex human traits there is interest in determining whether the PRS modifies, i.e.

View Article and Find Full Text PDF

The vast majority of disease-associated variants identified in genome-wide association studies map to enhancers, powerful regulatory elements which orchestrate the recruitment of transcriptional complexes to their target genes' promoters to upregulate transcription in a cell type- and timing-dependent manner. These variants have implicated thousands of enhancers in many common genetic diseases, including nearly all cancers. However, the etiology of most of these diseases remains unknown because the regulatory target genes of the vast majority of enhancers are unknown.

View Article and Find Full Text PDF

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.

View Article and Find Full Text PDF

The Annotation Query (AnnoQ) (http://annoq.org/) is designed to provide comprehensive and up-to-date functional annotations for human genetic variants. The system is supported by an annotation database with ∼39 million human variants from the Haplotype Reference Consortium (HRC) pre-annotated with sequence feature annotations by WGSA and functional annotations to Gene Ontology (GO) and pathways in PANTHER.

View Article and Find Full Text PDF
Article Synopsis
  • Phylogenetics is a crucial method for understanding evolutionary relationships among protein sequences, but it requires careful and computationally intensive analysis to avoid mistakes.
  • The PANTHER knowledgebase offers a comprehensive repository of phylogenetic trees and annotated protein functions, based on both automated and manual validation processes.
  • PANTHER also provides user-friendly tools and an API, allowing researchers to perform various protein analysis tasks, including genome exploration, enrichment analysis, and assessing the impact of genetic variants.
View Article and Find Full Text PDF

Motivation: Gene Ontology Causal Activity Models (GO-CAMs) assemble individual associations of gene products with cellular components, molecular functions and biological processes into causally linked activity flow models. Pathway databases such as the Reactome Knowledgebase create detailed molecular process descriptions of reactions and assemble them, based on sharing of entities between individual reactions into pathway descriptions.

Results: To convert the rich content of Reactome into GO-CAMs, we have developed a software tool, Pathways2GO, to convert the entire set of normal human Reactome pathways into GO-CAMs.

View Article and Find Full Text PDF

Gene function annotation is important for a variety of downstream analyses of genetic data. But experimental characterization of function remains costly and slow, making computational prediction an important endeavor. Phylogenetic approaches to prediction have been developed, but implementation of a practical Bayesian framework for parameter estimation remains an outstanding challenge.

View Article and Find Full Text PDF

We aim to enable the accurate and efficient transfer of knowledge about gene function gained from and other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions.

View Article and Find Full Text PDF

Enhancers are powerful and versatile agents of cell-type specific gene regulation, which are thought to play key roles in human disease. Enhancers are short DNA elements that function primarily as clusters of transcription factor binding sites that are spatially coordinated to regulate expression of one or more specific target genes. These regulatory connections between enhancers and target genes can therefore be characterized as enhancer-gene links that can affect development, disease, and homeostatic cellular processes.

View Article and Find Full Text PDF

PANTHER (Protein Analysis Through Evolutionary Relationships, http://www.pantherdb.org) is a resource for the evolutionary and functional classification of protein-coding genes from all domains of life.

View Article and Find Full Text PDF

To increase the utility of Gene Ontology annotations for interpretation of genome-wide experimental data, we have developed GO-CAM, a structured framework for linking multiple GO annotations into an integrated model of a biological system. We expect that GO-CAM will enable new applications in pathway and network analysis as well as improving standard GO annotations for traditional GO-based applications.

View Article and Find Full Text PDF

The Systems Biology Graphical Notation (SBGN) is an international community effort that aims to standardise the visualisation of pathways and networks for readers with diverse scientific backgrounds as well as to support an efficient and accurate exchange of biological knowledge between disparate research communities, industry, and other players in systems biology. SBGN comprises the three languages Entity Relationship, Activity Flow, and Process Description (PD) to cover biological and biochemical systems at distinct levels of detail. PD is closest to metabolic and regulatory pathways found in biological literature and textbooks.

View Article and Find Full Text PDF

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes.

View Article and Find Full Text PDF

The PANTHER classification system ( http://www.pantherdb.org ) is a comprehensive system that combines genomes, gene function classifications, pathways and statistical analysis tools to enable biologists to analyze large-scale genome-wide experimental data.

View Article and Find Full Text PDF

PANTHER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) is a resource for the evolutionary and functional classification of genes from organisms across the tree of life. We report the improvements we have made to the resource during the past two years.

View Article and Find Full Text PDF
Article Synopsis
  • - This text serves as a correction to a previously published article, identified by its DOI, which is 10.4056/sigs.5279417.
  • - The correction likely addresses errors or inaccuracies in the original publication that needed clarification.
  • - Such corrections are important for maintaining the integrity and reliability of academic research and its findings.
View Article and Find Full Text PDF

We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied.

View Article and Find Full Text PDF

The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments.

View Article and Find Full Text PDF

PANTHER (Protein Analysis THrough Evolutionary Relationships, http://pantherdb.org) is a widely used online resource for comprehensive protein evolutionary and functional classification, and includes tools for large-scale biological data analysis. Recent development has been focused in three main areas: genome coverage, functional information ('annotation') coverage and accuracy, and improved genomic data analysis tools.

View Article and Find Full Text PDF

The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

View Article and Find Full Text PDF