Excitation wavelength controllable lanthanide upconversion allows for real-time manipulation of luminescent color in a composition-fixed material, which has been proven to be conducive to a variety of applications, such as optical anti-counterfeiting and information security. However, current available materials highly rely on the elaborate core-shell structure in order to ensure efficient excitation-dependent energy transfer routes. Herein, multicolor upconversion luminescence in response to both near-infrared I and near-infrared II (NIR-I and NIR-II) excitations is realized in a novel but simple NaYGeO:Yb/Er phosphor.
View Article and Find Full Text PDFBACKGROUND This study aimed to evaluate the impact of the donor-recipient relationship on the long-term outcomes of living-related kidney transplantation (LRKT), a topic that has been previously underreported. MATERIAL AND METHODS A total of 598 LRKTs performed between 2001 and 2021were analyzed and classified into 5 groups based on the donor-recipient relationship: 228 from mothers (M-to-C), 160 from fathers (F-to-C), 115 from siblings, 55 from spouses, and 40 from offspring. Graft survival, postoperative complications within the first year, serum creatinine (Scr), and hazard ratio (HR) for all-cause graft loss were assessed.
View Article and Find Full Text PDFEfficient control over lanthanide luminescence by regulating excitations offers a real-time and reversible luminescence-managing strategy, which is of great importance and highly desirable for various applications, including multicolor display and information encryption. Herein, we studied the crystal structure, luminescence properties, and mechanisms of undoped and Tb/Eu-doped CaZrO in detail. The intrinsic purple-blue luminescence from host CaZrO and the introduced green/red luminescence from guest dopants Tb/Eu were found to have different excitation mechanisms and, therefore, different excitation wavelength ranges.
View Article and Find Full Text PDFUncontrollable blood loss is the greatest cause of mortality in prehospital patients and the main source of disability and death in hospital care. Compared with external hemostats, intravenous hemostats are more appropriate for preventing and treating uncontrolled bleeding in vivo and large bleeding on the body surface. This Review initially establishes intravenous hemostats' response basis, including the coagulation mechanism, fibrinolytic pathway, and protein corona.
View Article and Find Full Text PDFUpconversion materials have numerous potential applications in light energy utilization due to their unique optical properties. The use of visible light excitation to obtain ultraviolet emission is a promising technology with broad application prospects, while relevant research is absent. A series of Pr, Gd doped YOF phosphors were synthesized by traditional solid-state reaction.
View Article and Find Full Text PDFRatiometric luminescence thermometry with trivalent lanthanide ions and their 4f energy levels is an emerging technique for non-invasive remote temperature sensing with high spatial and temporal resolution. Conventional ratiometric luminescence thermometry often relies on thermal coupling between two closely lying energy levels governed by Boltzmann's law. Despite its simplicity, Boltzmann thermometry with two excited levels allows precise temperature sensing, but only within a limited temperature range.
View Article and Find Full Text PDFY6MoO12 doped with Eu3+ was synthesized using a citrate-complexation route, and was calcined at 800 °C and 1400 °C, respectively. The structure, morphology and photoluminescence (PL) properties of the samples, and their dependence on the crystallite size were investigated. XRD patterns indicate that the Y6MoO12:Eu3+ powder was obtained at both calcination temperatures, and had a cubic structure.
View Article and Find Full Text PDFY6(WMo)(0.5)O12 activated with Eu(3+) ions was investigated as a red-emitting conversion phosphor for white light emitting diodes (WLEDs). The phosphors were synthesized by calcining a citrate-complexation precursor at different temperatures.
View Article and Find Full Text PDFLu(6)WO(12) and Lu(6)MoO(12) doped with Eu(3+) ions have been prepared by using a citrate complexation route, followed by calcination at different temperatures. The morphology, structure, and optical and photoluminescence properties of the compounds were studied as a function of calcination temperature. Both compositions undergo transitions from a cubic to a hexagonal phase when the calcination temperature increases.
View Article and Find Full Text PDFSystematically theoretical research was performed on the monazite- and zircon-structure RXO(4) (R = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; X = P, As) series by using the chemical bond theory of dielectric description. The chemical bond properties of R-O and X-O bonds were presented. In the zircon phase, the covalency fractions of X-O bonds increased in the order of V-O < As-O < P-O, which was in accordance with the ionic radii and electronegative trends, and the covalency fractions of R-O bonds varied slightly due to the lanthanide contraction.
View Article and Find Full Text PDFTheoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values.
View Article and Find Full Text PDFThe chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively.
View Article and Find Full Text PDFRhombohedral-calcite and hexagonal-vaterite types of LuBO(3):Eu(3+) microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples. The pH, temperature, concentration, solvent, and reaction time have a crucial influence on the phase formation, shape evolution, and microstructure.
View Article and Find Full Text PDFThe relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values.
View Article and Find Full Text PDF