Publications by authors named "Huaisu Guo"

In this work, four novel defective MIL-101(Fe) catalysts with coordinatively unsaturated sites were successfully prepared via a facile synthesis strategy by employing benzoic acid, acetic acid, oxalic acid, or citric acid as a modulator. The modified catalysts were demonstrated the existence of defects in the parent framework by a series of characterizations. As compared to the initial MIL-101(Fe), the electronic structure of defective MIL-101(Fe) catalyst was effectively adjusted; meanwhile, the coordinatively unsaturated Fe sites were efficiently generated and the pore sizes were enlarged.

View Article and Find Full Text PDF

In this work, quinone-modified metal-organic framework MIL-101(Fe)(Q-MIL-101(Fe)), as a novel heterogeneous Fenton-like catalyst, was synthesized for the activation of persulfate (PS) to remove bisphenol A (BPA). The synthetic Q-MIL-101(Fe) was characterized via X-ray diffraction, scanning electron microscope, Fourier transform infrared, electrochemical impedance spectroscopy, cyclic voltammetry and X-ray photoelectron spectroscopy. As compared to the pure MIL-101(Fe), Q-MIL-101(Fe) displayed better catalytic activity and reusability.

View Article and Find Full Text PDF

Bubble-propelled micromotors with controllable shapes and sizes have been developed by a microfluidic method, which serves for effective wastewater treatment. Using the emulsion from microfluidics as the template, monodisperse micromotors can be fabricated in large quantities based on phase separation and UV-induced monomer polymerization. By adjusting the volume ratio of the two immiscible oils (ethoxylated trimethylolpropane triacrylate/paraffin oil) in the initial emulsion, the geometry of the resulting micromotor can be precisely controlled from nearly spherical, hemispherical to crescent-shaped.

View Article and Find Full Text PDF