Publications by authors named "Huaipeng Su"

High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size over a broad range of the spectrum.

View Article and Find Full Text PDF

We report in this communication the design and fabrication of solution-processed white light-emitting diodes (LEDs) containing a bilayer of heavy metal-free colloidal quantum dots (QDs) and polymer in the device active region. White electroluminescence was obtained in the LEDs by mixing the red emission of ZnCuInS/ZnS core/shell QDs and the blue-green emission of poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine). A high color rendering index of 92 was achieved as compared to a 5310 K blackbody reference by virtue of broadband emission of the QDs.

View Article and Find Full Text PDF

A model which involves both bulk diffusion process and surface reaction process has been developed for describing the growth behaviour of nanoparticles. When the model is employed, hypothesising that either of the processes alone dominates the overall growth process is unnecessary. Conversely, the relative magnitude of contributions from both processes could be obtained from the model.

View Article and Find Full Text PDF

We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs) overcoated with Cd(0.5)Zn(0.5)S/ZnS multishells.

View Article and Find Full Text PDF

Mucin 1 (MUC1) is a glycoprotein expressed on most epithelial cell surfaces, which has been confirmed as a useful biomarker for the diagnosis of early cancers. In this paper, we report an aptamer-based, quantitative detection protocol for MUC1 using a 3-component DNA hybridization system with quantum dot (QD)-labeling: in the absence of MUC1 peptides, strong fluorescence is observed upon mixing the three specially designed DNA strands (quencher, QD-labeled reporter, and the MUC1 aptamer stem); in the presence of MUC1 peptides, a successive decrease in fluorescence intensity is detected since the MUC1 peptide binds to the aptamer strand in such a way to allow the quencher and fluorescence reporter to be brought into close proximity (which leads to the occurrence of fluorescence resonance energy transfer, FRET, between the quencher and QD). The detection limit for MUC1 with this novel approach is in the nanomolar (nM) level, and a linear response can be established for the approximate range found in blood serum.

View Article and Find Full Text PDF