The nuclear factor Y (NF-Y) transcription factor contains three subfamilies: NF-YA, NF-YB, and NF-YC. The NF-Y family have been reported to be key regulators in plant growth and stress responses. However, little attention has been given to these genes in melon ( L.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2020
We explored the effects of sub-low temperature and drought on water transport in tomato seedlings under normal temperature (25 ℃ day/18 ℃ night) and sub-low temperature (15 ℃ day/8 ℃ night) within the artificial climate chamber, and under normal irrigation (75%-85% field water holding capacity) and drought treatment (55%-65% field water holding capacity). We analyzed the effects of temperature and soil moisture on water transport, stomata and xylem vessel morpholo-gical and anatomical structure of tomato plants. The results showed that compared with condition of normal temperature + normal irrigation, drought treatment significantly reduced leaf water potential, transpiration rate, stomatal conductance, hydraulic conductance, sap flow rate, stomatal length, and diameter of leaf, stem and root conduit, and thus thickened the cell wall and enhanced the anti-embolism ability of conduit in leaf, stem and root.
View Article and Find Full Text PDFTo select the optimum fertilizer application under specific irrigation levels and to provide a reliable fertigation system for tomato plants, an experiment was conducted by using a microporous membrane for water-fertilizer integration under non-pressure gravity. A compound fertilizer (N:P2O5:K2O, 18:7:20) was adopted for topdressing at four levels, 1290 kg/ha, 1140 kg/ha, 990 kg/ha, and 840 kg/ha, and the locally recommended level of 1875 kg/ha was used as the control to explore the effects of different fertilizer application rates on growth, nutrient distribution, quality, yield, and partial factor of productivity (PFP) in tomato. The new regime of microporous membrane water-fertilizer integration under non-pressure gravity irrigation reduced the fertilizer application rate while promoting plant growth in the early and intermediate stages.
View Article and Find Full Text PDFBackground: Pheophorbide a oxygenase (PAO) is an important enzyme in the chlorophyll catabolism pathway and is involved in leaf senescence. It opens the porphyrin macrocycle of pheophorbide a and finally forms the primary fluorescent chlorophyll catabolite. Previous studies have demonstrated the function of PAO during cell death.
View Article and Find Full Text PDFCysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.).
View Article and Find Full Text PDF