The dependency of low-dimensional embedding to principal component space seriously limits the effectiveness of existing robust principal component analysis (PCA) algorithms. Simply projecting the original sample coordinates onto orthogonal principal component directions may not effectively address various noise-corrupted scenarios, impairing both discriminability and recoverability. Our method addresses this issue through a generalized PCA (GPCA), which optimizes regression bias rather than sample mean, leading to more adaptable properties.
View Article and Find Full Text PDFWith the development of deep learning, medical image segmentation in computer-aided diagnosis has become a research hotspot. Recently, UNet and its variants have become the most powerful medical image segmentation methods. However, these methods suffer from (1) insufficient sensing field and insufficient depth; (2) computational nonlinearity and redundancy of channel features; and (3) ignoring the interrelationships among feature channels.
View Article and Find Full Text PDFIEEE Trans Image Process
July 2022
Deep subspace learning is an important branch of self-supervised learning and has been a hot research topic in recent years, but current methods do not fully consider the individualities of temporal data and related tasks. In this paper, by transforming the individualities of motion capture data and segmentation task as the supervision, we propose the local self-expression subspace learning network. Specifically, considering the temporality of motion data, we use the temporal convolution module to extract temporal features.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2021
By exploiting the kernel trick, the sparse subspace model is extended to the nonlinear version with one or a combination of predefined kernels, but the high-dimensional space induced by predefined kernels is not guaranteed to be able to capture the features of the nonlinear data in theory. In this article, we propose a nonconvex low-rank learning framework in an unsupervised way to learn a kernel to replace the predefined kernel in the sparse subspace model. The learned kernel by a nonconvex relaxation of rank can better exploiting the low-rank property of nonlinear data to induce a high-dimensional Hilbert space that more closely approaches the true feature space.
View Article and Find Full Text PDFMulti-output regression aims at mapping a multivariate input feature space to a multivariate output space. Currently, it is effective to extend the traditional support vector regression (SVR) mechanism to solve the multi-output case. However, some methods adopting a combination of single-output SVR models exhibit the severe drawback of not considering the possible correlations between outputs, and other multi-output SVRs show high computational complexity and are typically sensitive to parameters due to the influence of noise.
View Article and Find Full Text PDFHuman motion capture data has been widely used in many areas, but it involves a complex capture process and the captured data inevitably contains missing data due to the occlusions caused by the actor's body or clothing. Motion recovery, which aims to recover the underlying complete motion sequence from its degraded observation, still remains as a challenging task due to the nonlinear structure and kinematics property embedded in motion data. Low-rank matrix completion based methods have shown promising performance in short-time-missing motion recovery problems.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2017
In recent years, sparse representation-based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data have a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive SRC (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space.
View Article and Find Full Text PDFIEEE Trans Image Process
July 2018
Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for motion capture data do not effectively model some important characteristics of motion capture data, such as Riemannian manifold structure and containing non-Gaussian noise.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2016
Sparse representation-based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. devised an SRC steered discriminative projection (SRC-DP) method.
View Article and Find Full Text PDFMicroarrays allow researchers to examine the expression of thousands of genes simultaneously. However, identification of genes differentially expressed in microarray experiments is challenging. With an optimal test statistic, we rank genes and estimate a threshold above which genes are considered to be differentially expressed genes (DE).
View Article and Find Full Text PDF