This work demonstrates, for the first time, an all-optically controllable distributed feedback (DFB) laser based on a dye-doped holographic polymer-dispersed liquid crystal (DDHPDLC) grating with a photoisomerizable dye. Intensity of the lasing emission can be reduced and increased by raising the irradiation intensity of one CW circularly-polarized green beam and the irradiation time of one CW circularly-polarized red beam, respectively. The all-optical controllability of the lasing emission is owing to the green-beam-induced isothermal nematic-->isotropic and red-beam-induced isothermal isotropic-->nematic phase transitions of the LCs via trans-->cis and cis-->trans back isomerizations of the azo-dye, respectively, in the LC-droplet-rich regions of the grating.
View Article and Find Full Text PDF