Background: Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) released from a periampullary or pancreatic cancer can be more frequently detected in the portal than the systemic circulation and potentially can be used to identify patients with liver micrometastases. Aims of this study is to determine if CTCs count in portal venous blood of patients with nonmetastatic periampullary or pancreatic adenocarcinoma can be used as a predictor for subsequent liver metastases. CTCs were quantified in portal and peripheral venous blood samples collected simultaneously during pancreaticoduodenectomy in patients with presumed periampullary or pancreatic adenocarcinoma without image-discernible metastasis.
View Article and Find Full Text PDFBackground: Characterization of circulating tumor cells (CTCs) has been used to provide prognostic, predictive, and pharmacodynamic information in many different cancers. However, the clinical significance of CTCs and circulating tumor microemboli (CTM) in patients with pancreatic ductal adenocarcinoma (PDAC) has yet to be determined.
Methods: In this prospective study, CTCs and CTM were enumerated in the peripheral blood of 63 patients with PDAC before treatment using anti-EpCAM (epithelial cell adhesion molecule)-conjugated supported lipid bilayer-coated microfluidic chips.
Paraneoplastic Ma1 (PNMA1) is a member of a family of proteins involved in an autoimmune disorder called paraneoplastic neurological syndrome. Although it is widely expressed in brain, nothing is known about the function of PNMA1 in neurons. We find that PNMA1 expression is highest in the perinatal brain, a period during which developmentally regulated neuronal death occurs.
View Article and Find Full Text PDFZhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi
December 2005