Because the pathogenesis of high altitude polycythemia (HAPC) is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause. We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR), ferritin, and hepcidin as well as erythropoietin (EPO) and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected.
View Article and Find Full Text PDFThe mechanism of accelerated erythropoiesis under the hypoxic conditions of high altitude (HA) remains largely obscure. Here, we investigated the potential role of bone marrow (BM) T cells in the increased production of erythrocytes at HA. We found that mice exposed to a simulated altitude of 6,000 m for 1-3 weeks exhibited a significant expansion of BM CD4+ cells, mainly caused by increasing T helper 2 (Th2) cells.
View Article and Find Full Text PDFAims: Examined the change in neurobehavioral function of individuals acclimated to high altitudes and those native to high altitudes.
Methods: A neurobehavioral core test battery approved by the WHO (WHO-NCTB) was used to evaluate the effects of high altitude hypoxia on neurobehavioral function. The WHO-NCTB is composed of seven individual tests: a mood state profile, simple reaction time test, digit span test, Santa Ana manual dexterity test, digit symbol test, Benton visual retention test, and pursuit aiming test.
Objective: Hypoxia at high altitudes can lead to increased production of red blood cells through the hormone erythropoietin (EPO). In this study, we observed how the EPO-unresponsive hematopoietic stem cell (HSC) compartment responds to high-altitude hypoxic environments and contributes to erythropoiesis.
Materials And Methods: Using a mouse model at simulated high altitude, the bone marrow (BM) and spleen lineage marker(-)Sca-1(+)c-Kit(+) (LSK) HSC compartment were observed in detail.
Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood.
View Article and Find Full Text PDF