Publications by authors named "Huai-Cai Zeng"

Article Synopsis
  • * In this study, 396 neonates' cord serum samples were analyzed for 13 PFAS, revealing that higher levels of specific PFAS like PFNA and PFDA correlated with increased ASD-related symptoms as children reached age 4.
  • * The findings suggest significant interactions between multiple PFAS and ASD symptoms, with PFNA identified as a major factor, and indicate that a portion of the impact from long-chain PFAS exposure on sensory symptoms may be mediated through a hormone called androstenedione.
View Article and Find Full Text PDF

Bisphenol S (BPS) is an environmental pollutant that can accumulate in the human body and cause harm. Puerarin (PUE) is a flavonoid with anti-inflammatory and antioxidant effects. In this study, we used 50 mg/kg/d BPS as a poison and PUE as an intervention for model mice for 42 d.

View Article and Find Full Text PDF

Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities.

View Article and Find Full Text PDF

Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted.

View Article and Find Full Text PDF

The reproductive toxicity of bisphenol S (BPS) in male mammals and its possible mechanism are not clear. We investigated the effects and possible mechanism of action of BPS on adult male C57BL/6 mice. We found that exposure to 200-mg/kg BPS resulted in a significant decrease in the sperm count in the caput/corpus and cauda epididymis, significantly decreased sperm motility, and significantly increased the sperm deformity.

View Article and Find Full Text PDF

The liver is the primary target organ for perfluorooctane sulphonate (PFOS), a recently discovered persistent organic pollutant. However, the mechanisms mediating hepatotoxicity remain unclear. Herein, we explored the relationship between reactive oxygen species (ROS) and autophagy and apoptosis induced by PFOS in L-02 cells, which are incubated with different concentrations of PFOS (0, 50, 100, 150, 200, or 250 mol/L) for 24 or 48 hrs at 37°C.

View Article and Find Full Text PDF

Bisphenol S (BPS) is associated with neurotoxicity, but its molecular mechanisms are unclear. Our aim was to investigate the role of the brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB)/cAMP-response element-binding protein (CREB) signaling pathway in BPS-induced cytotoxicity in SK-N-SH cells. The cells were treated with various concentrations of BPS, and cell viability, apoptosis rate, mitochondrial membrane potential (MMP), and the BDNF, cleaved-caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), TrkB, CREB, and phospho-CREB (p-CREB) levels were determined.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is the most common inflammatory bowel disease, and its incidence has increased in recent years. Recent clinical and experimental data indicate that gut microbiota plays a pivotal role in the pathogenesis of UC. establishes a stable and persistent colonization in the gastrointestinal tract without apparent pathogenicity to gastrointestinal or extragastrointestinal tissues.

View Article and Find Full Text PDF
Article Synopsis
  • - Tri-ortho-cresyl phosphate (TOCP) is an organophosphorus ester linked to delayed neuropathy in sensitive species, but the mechanisms behind its neurotoxicity are not fully understood.
  • - The study reveals that TOCP induces autophagy in neuroblastoma cells through the activation of protein kinase C alpha (PKCα), which enhances the expression of certain autophagic proteins like NBR1, LC3, and P62.
  • - PKCα activation disrupts the ubiquitin-proteasome system, leading to reduced proteasome activity and increased accumulation of abnormal proteins, contributing to neurodegenerative conditions such as hyperphosphorylated tau proteins and impaired MAP 2 and NF-H
View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a new kind of persistent organic pollutant, is widely distributed in the environment and exists in various organisms, where it is also a neurotoxic compound. However, the potential mechanism of its neurotoxicity is still unclear. To examine the role of epigenetics in the neurotoxicity induced by PFOS, SK-N-SH cells were treated with different concentrations of PFOS or control medium (0.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway.

View Article and Find Full Text PDF

Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C.

View Article and Find Full Text PDF

Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart.

View Article and Find Full Text PDF

Objectives: The aim of the study was to elucidate the possible role and mechanism of NO-1886 (ibrolipim, a lipoprotein lipase activator) in ameliorating insulin resistance induced by high palmitate.

Methods: HepG2 cells were cultured in RPMI 1640 medium and were treated with palmitate to induce insulin resistance. Free fatty acids (FFAs), glucose, glycogen, cell viability and mRNA and protein levels were analysed separately.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA.

View Article and Find Full Text PDF

Numerous studies have indicated the neurotoxicity of perfluorooctane sulfonate (PFOS), a persistent and bioaccumulative compound, particularly during developmental stages of higher organisms. To explore the pro-inflammatory effect in the developmental neurotoxicity, effects of prenatal exposure to PFOS on glial activation in hippocampus and cortex were examined in offspring rats. Dams received 0.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a kind of widely distributed environmentally organic compound, has been found to cause developmental toxicity. Although microRNAs (miRNAs) play an important role in many metabolic tasks, whether and how they are involved in the process of PFOS-induced toxicity is largely unknown. To address this problem, PFOS-induced changes in miRNAs and target gene expression in zebrafish embryos, and the potential mechanism of PFOS-induced toxic action were studied in this research.

View Article and Find Full Text PDF

Both animal and human studies have demonstrated that exposure to chemical pollutants during critical developmental period causes adverse consequences later in life. In uterus, perfluorooctanesulfonate (PFOS) exposure has been known to cause developmental neurotoxicity, such as increased motor activity, reduced habitation and impaired cognitive function. The possible mechanism of the impaired cognitive function induced by prenatal PFOS exposure was evaluated in this study.

View Article and Find Full Text PDF

The adverse environmental exposure in early life may have adverse effects on animals through epigenetic aspects. The current study examined the possibility of early epigenetic alteration in PFOS-exposed rat liver. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) at doses of 0.

View Article and Find Full Text PDF