Publications by authors named "Huahao Zhang"

We launched the initial version of FishTEDB in 2018, which aimed to establish an open-source, user-friendly, data-rich transposable element (TE) database. Over the past 5 years, FishTEDB 1.0 has gained approximately 10 000 users, accumulating more than 450 000 interactions.

View Article and Find Full Text PDF

A high-quality reference genome is indispensable for resolving biologically essential traits. is a dioecious plant. A complete reference genome will be crucial for understanding their sex evolution and important biological characteristics, such as aerial roots, mutualistic symbiosis with ficus-wasps, and fruiting from old stems.

View Article and Find Full Text PDF
Article Synopsis
  • Teleost fishes are the most diverse group of vertebrates and have a history of polyploidy, including instances of subgenome dominance where one subgenome is more expressed than the other.
  • Recent research analyzed the genomes of 21 cyprinids (like common carp and goldfish) to explore subgenome evolution after multiple allopolyploidy events.
  • The study found that subgenome dominance likely results from factors like maternal influence and the density of transposable elements, shedding light on how polyploidy affects evolution in these fishes.
View Article and Find Full Text PDF

The simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) was performed by integrating natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (UAE). Among the eight kinds of NADES screened, choline chloride-1,2-propylene glycol was the most suitable extractant. The probe-type ultrasound-assisted NADES extraction system (pr-UAE-NADES) demonstrated higher extraction efficiency compared with plate-type ultrasound-assisted NADES extraction system (pl-UAE-NADES).

View Article and Find Full Text PDF
Article Synopsis
  • - Bumblebees are crucial for ecosystems and agriculture, with both social and solitary lifestyles, yet many species are declining due to factors like habitat loss and climate change.
  • - Researchers sequenced the genomes of 17 bumblebee species to understand genetic diversity and dynamics, uncovering variations that affect their ecology and behavior.
  • - The study highlights changes in genes related to foraging, immunity, and adaptations, showcasing how bumblebee genomes have evolved and emphasizing their ecological importance.
View Article and Find Full Text PDF

Ancherythroculter nigrocauda is a cyprinid fish endemic of the upper reaches of the Yangtze River in China, where it is an important aquaculture and commercial species. It is also a threatened species as a result of overfishing, dam construction and water pollution. In this study, a chromosome-level genome assembly of A.

View Article and Find Full Text PDF

Horizontal transfer of transposable elements (HTT) is an important process shaping eukaryote genomes, yet very few studies have quantified this phenomenon on a large scale or have evaluated the selective constraints acting on transposable elements (TEs) during vertical and horizontal transmission. Here we screen 307 vertebrate genomes and infer a minimum of 975 independent HTT events between lineages that diverged more than 120 million years ago. HTT distribution greatly differs from null expectations, with 93.

View Article and Find Full Text PDF

Although DNA transposons often generated internal deleted derivatives such as miniature inverted-repeat transposable elements, short internally deleted elements (SIDEs) derived from nonlong terminal-repeat retrotransposons are rare. Here, we found a novel SIDE, named Persaeus, that originated from the chicken repeat 1 (CR1) retrotransposon Zenon and it has been found widespread in Lepidoptera insects. Our findings suggested that Persaeus and the partner Zenon have experienced a transposition burst in their host genomes and the copy number of Persaeus and Zenon in assayed genomes are significantly correlated.

View Article and Find Full Text PDF

Although there are some documented examples on population dynamics of transposable elements (TEs) in model organisms, the evolutionary dynamics of TEs in domesticated species has not been systematically investigated. The objective of this study is to understand population dynamics of TEs during silkworm domestication. In this work, using transposon-display we examined the polymorphism of seven TE families [they represent about 59% of silkworm (Bombyx mori) total TE content] in four domesticated silkworm populations and one wild silkworm population.

View Article and Find Full Text PDF

Background: Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome.

View Article and Find Full Text PDF

TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome.

View Article and Find Full Text PDF

Oxidation of low density lipoprotein (LDL) has been considered as the critical factor which led to atherosclerosis (AS). Lipid and protein in LDL were oxidized to cause change of spectra during oxidation. Clove has been demonstrated to possess the strongest antioxidant capacity among 87 both medical and edible plants proclaimed by China.

View Article and Find Full Text PDF

Miniature inverted-repeat transposable elements (MITEs) have attracted much attention due to their widespread occurrence and high copy numbers in eukaryotic genomes. However, the systematic knowledge about MITEs in insects and other animals is still lacking. In this study, we identified 6012 MITE families from 98 insect species genomes.

View Article and Find Full Text PDF

Helentrons represent a novel subtype of Helitrons. However, the evolutionary history of Helentrons in organisms is not clearly understood. In this study, we performed structure and autonomous partner analyses, which revealed that bm_455, a TE obtained from the Bombyx mori TE database, BmTEdb, was a member of Helentrons but not a long-terminal repeat (LTR) retrotransposon.

View Article and Find Full Text PDF

We report a Danio rerio transposon named DrTRT, for D. rerio Transposon Related to Tc1 The complete sequence of the DrTRT transposon is 1,563 base pairs (bp) in length, and its transposase putatively encodes a 338-amino acid protein that harbors a DD37E motif in its catalytic domain. We present evidence based on searches of publicly available genomes that TRT elements commonly occur in vertebrates and protozoa.

View Article and Find Full Text PDF

Background: PHIS transposon superfamily belongs to DNA transposons and includes PIF/Harbinger, ISL2EU, and Spy transposon groups. These three groups have similar DDE domain-containing transposases; however, their coding capacity, species distribution, and target site duplications (TSDs) are significantly different.

Results: In this study, we systematically identified and analyzed PHIS transposons in 836 sequenced eukaryotic genomes using transposase homology search and structure approach.

View Article and Find Full Text PDF

Background: Horizontal transfer (HT) of transposable elements (TEs) into a new genome is considered as an important force to drive genome variation and biological innovation. However, most of the HT of DNA transposons previously described occurred between closely related species or insects.

Results: In this study, we carried out a detailed analysis of four DNA transposons, which were found in the first sequenced twisted-wing parasite, Mengenilla moldrzyki.

View Article and Find Full Text PDF

Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion.

View Article and Find Full Text PDF

Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus.

View Article and Find Full Text PDF

Miniature inverted-repeat transposable elements (MITEs) are a specific group of nonautonomous DNA transposons, and they are distributed in a wide range of hosts. However, the origin and evolutionary history of MITEs in eukaryotic genomes remain unclear. In this study, six MITEs were identified in the silkworm (Bombyx mori).

View Article and Find Full Text PDF

The silkworm, Bombyx mori, is one of the major insect model organisms, and its draft and fine genome sequences became available in 2004 and 2008, respectively. Transposable elements (TEs) constitute ~40% of the silkworm genome. To better understand the roles of TEs in organization, structure and evolution of the silkworm genome, we used a combination of de novo, structure-based and homology-based approaches for identification of the silkworm TEs and identified 1308 silkworm TE families.

View Article and Find Full Text PDF

In this study, we developed a structure-based approach to identify Helitrons in four lepidopterans and systematically analysed Helitrons in the silkworm genome. We found that the content of Helitrons varied greatly among genomes. The silkworm genome harboured 67,555 Helitron-related sequences that could be classified into 21 families and accounted for ≈ 4.

View Article and Find Full Text PDF

Repetitive sequences (repeats) represent a significant fraction of the eukaryotic genomes and can be divided into tandem repeats, segmental duplications, and interspersed repeats on the basis of their sequence characteristics and how they are formed. Most interspersed repeats are derived from transposable elements (TEs). Eukaryotic TEs have been subdivided into two major classes according to the intermediate they use to move.

View Article and Find Full Text PDF