Vibration monitoring is one of the most effective approaches for bearing fault diagnosis. Within this category of techniques, sparsity constraint-based regularization has received considerable attention for its capability to accurately extract repetitive transients from noisy vibration signals. The optimal solution of a sparse regularization problem is determined by the regularization term and the data fitting term in the cost function according to their weights, so a tradeoff between sparsity and data fidelity has to be made inevitably, which restricts conventional regularization methods from maintaining strong sparsity-promoting capability and high fitting accuracy at the same time.
View Article and Find Full Text PDFThe utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed.
View Article and Find Full Text PDF