We aimed to develop a comprehensive proton relative biological effectiveness (RBE) model based on accumulated cell survival data in the literature. Our approach includes four major components: (1) Eligible cell survival data with various linear energy transfers (LETs) in the Particle Irradiation Data Ensemble (PIDE) database (72 datasets in four cell lines); (2) a cell survival model based on Poisson equation, with and defined as the ability to generate and repair damage, respectively, to replace the classic linear-quadratic model for fitting the cell survival data; (3) hypothetical linear relations of and on LET, or and ; and (4) a multi-curve fitting (MCF) approach to fit all cell survival data into the survival model and derive the , , , and values for each cell line. Dependences of these parameters on cell type were thus determined and finally a comprehensive RBE model was derived.
View Article and Find Full Text PDFBackground: In preclinical radio-neuromodulation research, small animal experiments are pivotal for unraveling radiobiological mechanism, investigating prescription and planning techniques, and assessing treatment effects and toxicities. However, the target size inside a rat brain is typically in the order of sub-millimeters. The small target inside the visual cortex neural region in rat brain with a diameter of around 1 mm was focused in this work to observe the physiological change of this region.
View Article and Find Full Text PDFBackground: Eye plaque brachytherapy is currently an optimal therapy for intraocular cancers. Due to the lack of an effective and practical technique to measure the seed radioactivity distribution, current quality assurance (QA) practice according to the American Association of Physicists in Medicine TG129 only stipulates that the plaque assembly be visually inspected. Consequently, uniform seed activity is routinely adopted to avoid possible loading mistakes of differential seed loading.
View Article and Find Full Text PDFAuger cascades generated in high atomic number nanoparticles (NPs) following ionization were considered a potential mechanism for NP radiosensitization. In this work, we investigated the microdosimetric consequences of the Auger cascades using the theory of dual radiation action (TDRA), and we propose the novel Bomb model as a general framework for describing NP-related radiosensitization. When triggered by an ionization event, the Bomb model considers the NPs that are close to a radiation sensitive cellular target, generates dense secondary electrons and kills the cells according to a probability distribution, acting like a "bomb.
View Article and Find Full Text PDFTumor targeting studies using metallic nanoparticles (NPs) have shown that the enhanced permeability and retention effect may not be sufficient to deliver the amount of intratumoral and intracellular NPs needed for effective in vivo radiosensitization. This work describes a pH-Low Insertion Peptide (pHLIP) targeted theranostic agent to enable image-guided NP-enhanced radiotherapy using a clinically feasible amount of injected NPs. Conventional gadolinium (Gd) NPs were conjugated to pHLIPs and evaluated in vitro for radiosensitivity and in vivo for mouse MRI.
View Article and Find Full Text PDFPurpose: Wet (neovascular) age-related macular degeneration (AMD) is the leading cause of blindness in the United States. The mainstay treatment requires monthly intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) drugs, associated with multiple visits, high cost, and the risk of procedural injury and infection. Anti-VEGF drugs inhibit the formation of neovasculature but do not directly attack it.
View Article and Find Full Text PDFMild cognitive impairment (MCI) exhibits a high risk of progression to Alzheimer's disease (AD), and it is commonly deemed as the precursor of AD. It is important to find effective and robust ways for the early diagnosis of MCI. In this paper, a random forest-based method combining multiple morphological metrics was proposed to identify MCI from normal controls (NC).
View Article and Find Full Text PDFTechnol Cancer Res Treat
December 2019
Objective: To evaluate the benefits of adaptive imaging with automatic correction compared to periodic surveillance strategies with either manual or automatic correction.
Methods: Using Calypso trajectories from 54 patients with prostate cancer at 2 institutions, we simulated 5-field intensity-modulated radiation therapy and dual-arc volumetric-modulated arc therapy with periodic imaging at various frequencies and with continuous adaptive imaging, respectively. With manual/automatic correction, we assumed there was a 30/1 second delay after imaging to determine and apply couch shift.
Purpose: Eye plaque brachytherapy is the most common approach for intraocular cancer treatment. It is, however, invasive and subject to large setup uncertainty due to the surgical operation. We propose a novel-focused kV x-ray technique with potential nanoparticle (NP) enhancement and evaluate its application in treating choroidal melanoma and iris melanoma by Monte Carlo (MC) dosimetry modeling.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a leading world-wide psychiatric disorder with high recurrence rate, therefore, it is desirable to identify current MDD (cMDD) and remitted MDD (rMDD) for their appropriate therapeutic interventions. In the study, 19 cMDD, 19 rMDD and 19 well-matched healthy controls (HC) were enrolled and scanned with the resting-state functional magnetic resonance imaging (rs-fMRI). The Hurst exponent (HE) of rs-fMRI in AAL-90 and AAL-1024 atlases were calculated and compared between groups.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2018
Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is large among CIEDs. Clinically significant defects have been reported at dose as low as 0.
View Article and Find Full Text PDFMany real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported.
View Article and Find Full Text PDFMild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer's disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI).
View Article and Find Full Text PDFIntracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data.
View Article and Find Full Text PDFObjective: To explore the effects of posterolateral lumbar fusion (PLF) and posterior lumbar interbody fusion (PLIF) on the stability of postoperative unstable single lumbar segment and the biomechanical alterations of the adjacent segments.
Methods: A finite element model of L3-S1 segments with a single segmental degeneration at the L4-5 level was established, and the model of L4-5 segmental instability after posterior laminectomy and facetectomy was also established, in which laminar and interior 2/3 area of bilateral facet joints were resected. Physical loads were applied to the models and the changes of the range of motion (ROM) at L4-5 level in different models were recorded at the condition of flexion, extension, lateral bending and rotation.
Objective: To explore the effects on degenerative single segmental lumbar spinal stability after posterior graded laminectomy and facetectomy by a finite element method.
Methods: A finite element model of L3-S1 segments with a single segmental degeneration at L4-5 level was established. Different models of L4-L5 segmental instability after posterior graded laminectomy and facetectomy were established.
Background And Purpose: Energy loss (EL) was regarded to be one of the key parameters in predicting the rupture risk of IA. In this paper, we took varied aspect ratio (AR) as a scaling law to create a series of longitudinal models to investigate the longitudinal changes of flow pattern and EL as the AR varies, in order to explore the relationship between the longitudinal characteristic EL parameters with aneurysm rupture risk.
Methods: Seven original intracranial aneurysms (IA) models with similar locations were reconstructed from patient 3D rotational angiography (3DRA) images.
Comput Methods Biomech Biomed Engin
January 2016
Nucleus replacement was deemed to have therapeutic potential for patients with intervertebral disc herniation. However, whether a patient would benefit from nucleus replacement is technically unclear. This study aimed to investigate the influence of nucleus pulposus (NP) removal on the biomechanical behavior of a lumbar motion segment and to further explore a computational method of biomechanical characteristics of NP removal, which can evaluate the mechanical stability of pulposus replacement.
View Article and Find Full Text PDFImage registration between planning CT images and cone beam-CT (CBCT) images is one of the key technologies of image guided radiotherapy (IGRT). Current image registration methods fall roughly into two categories: geometric features-based and image grayscale-based. Mutual information (MI) based registration, which belongs to the latter category, has been widely applied to multi-modal and mono-modal image registration.
View Article and Find Full Text PDFMedical intervention for major depressive disorder (MDD) can be more appropriately focused through the identification and characterization of neurobiological markers that are specific to the disorder, and this study aims to examine the abnormality in the fractional amplitude of low-frequency fluctuation (fALFF) and the amplitude of low-frequency fluctuation (ALFF) in currently depressed and remitted female MDD patients and to correlate these fluctuations with clinical markers of MDD. Nineteen currently depressed female patients, 19 remitted female patients, as well as 19 age- and education-matched healthy females participated in the resting-state functional magnetic resonance imaging (fMRI) analysis. We compared the fALFF/ALFF maps among the three groups and investigated the correlation between clinical measurements and statistically significant differences in the fALFF/ALFF of various brain regions.
View Article and Find Full Text PDFA novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images.
View Article and Find Full Text PDF