Activation of the NLRP3 inflammasome is a two-step process: the priming and the activating. The priming step involves the induction of NLRP3 and pro-IL-1β, while the activating step leads to the full inflammasome activation triggered by a NLRP3 activator. Although mechanisms underlying the NLRP3 inflammasome activation have been increasingly clear, the regulation of this process remains incompletely understood.
View Article and Find Full Text PDFAm J Respir Crit Care Med
August 2022
A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression.
View Article and Find Full Text PDFAim: We investigated the mechanisms by which N1-(β-d-ribofuranosyl)-5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase (AMPK), decreases lung injury and mortality when administered to mice post exposure to bromine gas (Br).
Methods: We exposed male C57BL/6 mice and heme oxygenase-1 (HO-1)-deficient (HO-1) and corresponding wild-type (WT) littermate mice to Br (600 ppm for 45 or 30 min, respectively) in environmental chambers and returned them to room air. AICAR was administered 6 h post exposure (10 mg·kg, intraperitoneal).
Am J Respir Cell Mol Biol
January 2021
Augmented glycolysis due to metabolic reprogramming in lung myofibroblasts is critical to their profibrotic phenotype. The primary glycolysis byproduct, lactate, is also secreted into the extracellular milieu, together with which myofibroblasts and macrophages form a spatially restricted site usually described as fibrotic niche. Therefore, we hypothesized that myofibroblast glycolysis might have a non-cell autonomous effect through lactate regulating the pathogenic phenotype of alveolar macrophages.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2020
Although endoplasmic reticulum (ER) unfolded protein response (UPR) is well known, mitochondrial unfolded protein response (UPR) has not been recognized in alveolar epithelial cells. Furthermore, ER stress and mitochondrial dysfunction are frequently encountered in alveolar epithelial cells from an array of lung disorders. However, these two scenarios have been often regarded as separate mechanisms contributing to the pathogeneses.
View Article and Find Full Text PDFRecent studies have presented compelling evidence that it is not tissue-resident, but rather monocyte-derived alveolar macrophages (TR-AMs and Mo-AMs, respectively) that are essential to development of experimental lung fibrosis. However, whether apolipoprotein E (ApoE), which is produced abundantly by Mo-AMs in the lung, plays a role in the pathogenesis is unclear. In this study, we found that pulmonary ApoE was almost exclusively produced by Mo-AMs in mice with bleomycin-induced lung fibrosis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2019
It has been increasingly recognized lately that aberrant cellular metabolism plays an important role in the pathogenesis of pulmonary fibrosis. In our previous systemic studies, we found that human lung myofibroblasts undergo glutaminolytic reprogramming, which is mediated by an increased expression of glutaminase (Gls) 1. We showed that augmented glutaminolysis critically regulates collagen production by promoting its stabilization in human lung myofibroblasts.
View Article and Find Full Text PDFMacrophage activation, i.e., classical M1 and the alternative M2, plays a critical role in many pathophysiological processes, such as inflammation and tissue injury and repair.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2019
Profound impairment in cellular oxygen consumption, referred to as cytopathic dysoxia, is one of the pathological hallmarks in the lungs of patients with pathogen-induced acute lung injury (ALI). However, the underlying mechanism for this functional defect remains largely unexplored. In this study, we found that primary mouse alveolar epithelial cells (AECs) conducted robust fatty acid oxidation (FAO).
View Article and Find Full Text PDFRapid initiation and timely resolution of inflammatory response in macrophages are synergistic events that are known to be equally critical to optimal host defense against pathogen infections. However, the regulation of these processes, in particular by a specific cellular metabolic program, has not been well understood. In this study, we found that IFN regulatory factor 2 (IRF2) underwent an early degradation in a proteasome-mediated pathway in LPS-treated mouse macrophages, followed by a later recovery of the expression via transactivation.
View Article and Find Full Text PDFGlutaminolysis is the metabolic process of glutamine, aberration of which has been implicated in several pathogeneses. Although we and others recently found a diversity of metabolic dysregulation in organ fibrosis, it is unknown if glutaminolysis regulates the profibrotic activities of myofibroblasts, the primary effector in this pathology. In this study, we found that lung myofibroblasts demonstrated significantly augmented glutaminolysis that was mediated by elevated glutaminase 1 (Gls1).
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2017
Metabolic reprogramming has been intrinsically linked to macrophage activation. Alveolar macrophages are known to play an important role in the pathogenesis of pulmonary fibrosis. However, systematic characterization of expression profile in these cells is still lacking.
View Article and Find Full Text PDFmiR-146a was reported to participate in various pathophysiological conditions in mammals, such as inflammation and immune responses, oncogenesis and cell damage. However, its function in low vertebrates has not been well elucidated. In this study, we characterized the expression profiles and functions of miR-146a in fish cells during iridovirus infection.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2017
Idiopathic pulmonary fibrosis is a well-known age-related disease. However, much less recognized has been the aging associated pathogenesis of this disorder. As we and others previously showed that dysregulation of micro-RNAs (miRNAs) was an important mechanism involved in pulmonary fibrosis, the role of these molecules in this pathology in the aged population has not been investigated (Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lü J.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2017
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
June 2016
Although microRNAs (miRs) have been well recognized to play an important role in the pathogenesis of organ fibrosis, there is a lack of evidence as to whether miRs directly regulate the differentiation of myofibroblasts, the putative effector cells during pathological fibrogenesis. In this study, we found that levels of miR-27a-3p were up-regulated in transforming growth factor-β1-treated human lung fibroblasts in a Smad2/3-dependent manner and in fibroblasts isolated from lungs of mice with experimental pulmonary fibrosis. However, both basal and transforming growth factor-β1-induced expression of miR-27a-3p were reduced in lung fibroblasts from patients with idiopathic pulmonary fibrosis compared with that from normal control subjects.
View Article and Find Full Text PDFAm J Respir Crit Care Med
December 2015
Rationale: Dysregulation of cellular metabolism has been shown to participate in several pathologic processes. However, the role of metabolic reprogramming is not well appreciated in the pathogenesis of organ fibrosis.
Objectives: To determine if glycolytic reprogramming participates in the pathogenesis of lung fibrosis and assess the therapeutic potential of glycolytic inhibition in treating lung fibrosis.
microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.
View Article and Find Full Text PDFThe pathogenesis of pulmonary fibrosis is a complicated and complex process that involves phenotypic abnormalities of a variety of cell types and dysregulations of multiple signaling pathways. There are numerous genetic, epigenetic and post-transcriptional mechanisms that have been identified to participate in the pathogenesis of this disease. However, efficacious therapeutics developed from these studies have been disappointingly limited.
View Article and Find Full Text PDFSingapore grouper iridovirus (SGIV) encodes a number of microRNAs (miRNAs) during infection. Among these, SGIV-miR-13 has robust expression at early stage after SGIV inoculation, raising a huge possibility that it participates in the viral infection. In the present study, we found that SGIV-miR-13 overexpression led to a significant reduction in viral load in cultured fish cells with SGIV infection, as demonstrated by less level of viral transcripts, viral-induced cytopathic effect (CPE) and assembled viral particles.
View Article and Find Full Text PDFThe M1 and M2 polarized phenotypes dictate distinctive roles for macrophages as they participate in inflammatory disorders. There has been growing interest in the role of cellular metabolism in macrophage polarization. However, it is currently unclear whether different aspects of a specific metabolic program coordinately regulate this cellular process.
View Article and Find Full Text PDFThere has been fast growing evidence showing that glycolysis plays a critical role in the activation of immune cells. Enhanced glycolysis leads to increased formation of intracellular lactate that is exported to the extracellular environment by monocarboxylate transporter 4 (MCT4). Although the biological activities of extracellular lactate have been well studied, it is less understood how the lactate export is regulated or whether lactate export affects glycolysis during inflammatory activation.
View Article and Find Full Text PDFAlthough microRNAs were shown to participate in innate immune responses, it is not completely understood how they regulate negative immunomodulatory events. IL-10 is an important anti-inflammatory mediator that prevents excessive inflammation and associated immunological pathologies. Although the regulation of IL-10 expression has been well studied at both the transcriptional and translational levels, it is less clear how microRNAs control IL-10 expression during inflammation.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs), once thought to be transcriptional noise, have been recently shown to regulate a variety of biological processes. However, there is not much knowledge regarding their roles in the inflammatory response. In this study, we performed human lncRNA microarray assays and identified a number of lncRNAs that demonstrated altered expression in response to LPS stimulation.
View Article and Find Full Text PDF