Publications by authors named "Huabo Wang"

Wintersweet () is known for its flowering in winter and its rich floral aroma; the whole flower is yellow and the inner petals are red. In this study, we chose the wintersweet genotypes HLT040 and HLT015 as the research materials, and studied the co-regulatory mechanism of color and fragrance of wintersweet through metabolomics and transcriptomics. This study found that there were more flavonoids in HLT015, and anthocyanins (cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside) were only present in HLT015, but HLT040 contained more monoterpenes and FVBPs (phenylpropanoid volatile compounds) than HLT015.

View Article and Find Full Text PDF

Hepatoblastoma (HB), the most common pediatric liver cancer, is associated with dysregulated Wnt/β-catenin, Hippo, and/or nuclear factor erythroid 2 ligand 2/nuclear respiratory factor 2 (NFE2L2/NRF2) pathways. In mice, pairwise combinations of oncogenically active forms of the terminal transcription factors of these pathways, namely, β-catenin (B), Yes-associated protein (YAP; Y), and Nrf2 (N), generated HBs, with the triple combination (B + Y + N) being particularly potent. Each tumor group alters the expression of thousands of B-, Y-, and N-driven unique and common target genes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the depletion of cholinergic neurons and the accumulation of amyloid β (Aβ) plaques. The complexity and multifaceted nature of AD necessitate further exploration of multi-target drugs for its treatment. In this study, a series of novel pyrazolinone-based compounds were designed, synthesized, and evaluated as acetylcholinesterase (AChE) inhibitors and antioxidants.

View Article and Find Full Text PDF

Background: Medicare claims data enables broad characterization of United States (US) patients with Alzheimer's disease and related dementias (ADRD). Resulting insights can be used as a reference to describe this population and as a benchmark for generalizability of patients with ADRD enrolled in clinical trials.

Objective: To characterize demographics, comorbidities, comedications, and healthcare resource utilization in US patients with newly diagnosed ADRD, focusing on differences across Medicare fee-for-service (FFS) and Medicare Advantage enrollees.

View Article and Find Full Text PDF

The MYC oncoprotein regulates numerous genes involved in cellular processes such as cell cycle and mitochondrial and ribosomal structure and function. This requires heterodimerization with its partner, MAX, and binding to specific promoter and enhancer elements. Here, we show that MYC and MAX also bind near transcriptional end sites (TESs) of over one-sixth of all annotated genes.

View Article and Find Full Text PDF

The "Mlx" and "Myc" transcription factor networks cross-communicate and share many common gene targets. Myc's activity depends upon its heterodimerization with Max, whereas the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. The current work demonstrates that body-wide Mlx inactivation, like that of Myc, accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism.

View Article and Find Full Text PDF

The "Mlx" and "Myc" Networks share many common gene targets. Just as Myc's activity depends upon its heterodimerization with Max, the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. We show here that body-wide inactivation, like that of accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism.

View Article and Find Full Text PDF

Wintersweet ( (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants.

View Article and Find Full Text PDF

Despite being among the most intensively studied oncogenes, its role in normal development has not been determined as mice do not survival beyond mid-gestation. ± mice live longer than their wild-type counterparts and are slower to accumulate many age-related phenotypes. However, haplo-insufficiency likely conceals other important phenotypes as many high-affinity Myc targets genes continue to be regulated normally.

View Article and Find Full Text PDF

MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally.

View Article and Find Full Text PDF

Myc, a member of the "Myc Network" of bHLH-ZIP transcription factors, supervises proliferation, metabolism, and translation. It also engages in crosstalk with the related "Mlx Network" to co-regulate overlapping genes and functions. We investigated the consequences of stepwise conditional inactivation of Myc and Mlx in primary and SV40 T-antigen-immortalized murine embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

Background & Aims: The c-Myc (Myc) Basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation, and proliferation. This Myc network crosstalks with the Mlx network, which consists of the Myc-like proteins MondoA and ChREBP, and Max-like Mlx.

View Article and Find Full Text PDF

Among the first discovered and most prominent cellular oncogenes is which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network.

View Article and Find Full Text PDF

Background: While overall Medicare Part C (Medicare Advantage) enrollment has grown more rapidly than fee-for-service Medicare enrollment, changes in the growth and characteristics of different enrollee populations have not been examined.

Objectives: For 2011-2019, to compare changes in the growth and characteristics of younger (age younger than 65) and older (age 65 and older) Medicare beneficiaries enrolled in Medicare Part A only, Medicare Parts A & B, and Medicare Part C.

Research Design: This was a retrospective, observational study.

View Article and Find Full Text PDF

Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell's type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply.

View Article and Find Full Text PDF

Background & Aims: Hepatoblastoma (HB), the most common pediatric liver cancer, often bears β-catenin mutations and deregulates the Hippo tumor suppressor pathway. Murine HBs can be generated by co-expressing β-catenin mutants and the constitutively active Hippo effector YAP. Some HBs and other cancers also express mutants of NFE2L2/NRF2 (NFE2L2), a transcription factor that tempers oxidative and electrophilic stress.

View Article and Find Full Text PDF

Metabolic reprogramming provides transformed cells with proliferative and/or survival advantages. Capitalizing on this therapeutically, however, has been only moderately successful because of the relatively small magnitude of these differences and because cancers may further adapt their metabolism to evade metabolic pathway inhibition. Mice lacking the peroxisomal bifunctional enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) and supplemented with the 12-carbon fatty acid lauric acid (C12) accumulate the toxic metabolite dodecanedioic acid (DDDA), which causes acute hepatocyte necrosis and liver failure.

View Article and Find Full Text PDF

Hepatoblastoma (HB) is the most common pediatric liver cancer. Although long-term survival of HB is generally favorable, it depends on clinical stage, tumor histology, and a variety of biochemical and molecular features. HB appears almost exclusively before the age of 3 years, is represented by seven histological subtypes, and is usually associated with highly heterogeneous somatic mutations in the catenin β1 () gene, which encodes β-catenin, a Wnt ligand-responsive transcriptional co-factor.

View Article and Find Full Text PDF

Background: Genetic profiling of cancers for variations in copy number, structure or expression of certain genes has improved diagnosis, risk-stratification and therapeutic decision-making. However the tumor-restricted nature of these changes limits their application to certain cancer types or sub-types. Tests with broader prognostic capabilities are lacking.

View Article and Find Full Text PDF

In two different mouse liver cancer models, we recently showed that a switch from oxidative phosphorylation (Oxphos) to glycolysis (the Warburg effect) is invariably accompanied by a marked decline in fatty acid oxidation (FAO) and a reciprocal increase in the activity of pyruvate dehydrogenase (PDH), which links glycolysis to the TCA cycle. We now show that short-term implementation of either medium-chain (MC) or long-chain (LC) high fat diets (HFDs) nearly doubled the survival of mice with c-Myc oncoprotein-driven hepatocellular carcinoma (HCC). Mechanistically, HFDs forced tumors to become more reliant on fatty acids as an energy source, thus normalizing both FAO and PDH activities.

View Article and Find Full Text PDF

Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication.

View Article and Find Full Text PDF

Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3vtnart4i90pucd3dasf8vusfl7mskdp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once