Publications by authors named "Huabo Huang"

Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.

View Article and Find Full Text PDF

Hydrogel-based flexible sensors have garnered considerable interest in the fields of soft electronics, robotics, and human-machine interfaces. For better practical applications, integrating multiple properties-such as self-adhesive, anti-freeze, anti-volatile, self-healing, and antibacterial-into a single gel for flexible sensors remains a challenge. In this paper, a multifunctional lignin-based polyvinyl alcohol gel, containing dynamic covalent bonds, hydrogen bonds, and coordination bonds, is constructed by a simple one-pot method, in which ethylene glycol/water chosen as a binary solvent and KI as a conductive medium.

View Article and Find Full Text PDF

Heterostructures and the introduction of heterogeneous elements have been regarded as effective strategies to promote electrochemical performance. Herein, sulfur species are introduced by a simple hydrothermal vulcanization method, which constructs the open heterostructure FeS/Mn(OH) as a bifunctional material. The open cordyceps-like morphology can make the material contact more sufficiently with the electrolyte, exposing a large number of reaction sites.

View Article and Find Full Text PDF

Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N-C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities.

View Article and Find Full Text PDF

The key to increasing the rate of oxygen evolution reaction (OER) lies in accelerated four-electron dynamics, while the key to facilitating the development of supercapacitors lies in the design of electrode materials. This paper synthesized manganese-iron Prussian blue (MnFe-PBA@IF) at room temperature, and hexagonal concave structures w ere prepared using a fast-reducing matrix. Interestingly, MnFe-PBA@IF has an amorphous structure favorable to exposing more active surfaces.

View Article and Find Full Text PDF

In this work, manganese dioxide (MnO) nanosheets in situ loaded on a high-purity graphite flake (GF) were prepared by one-step hydrothermal deposition. It was found that the specific capacitance value of a single MnO/GF electrode was 882 F/g at a current density of 1.0 A/g in a KOH electrolyte, and the specific capacitance retention of the MnO/GF electrode can reach about 90.

View Article and Find Full Text PDF

In order to overcome the challenge of synchronously strengthening and toughening polypropylene (PP) with a low-cost and environmental technology, CaCO (CC) nanoparticles are modified by tartaric acid (TA), a kind of food-grade complexing agent, and used as nanofillers for the first time. The evaluation of mechanical performance showed that, with 20 wt.% TA-modified CC (TAMCC), the impact toughness and tensile strength of TAMCC/PP were 120% and 14% more than those of neat PP, respectively.

View Article and Find Full Text PDF

Novel conducting hydrogels (PVA-TA) with dual network structures were synthesized by the grafting reaction of tetraaniline (TA) into the main chains of poly(vinyl alcohol) and in situ reinforced by self-assembly of a sorbitol derivative as the gelator. The chemical structure of the PVA-TA hydrogels was characterized by using FT-IR and NMR. The mechanical strength of the PVA-TA hydrogels was strongly improved due to the presence of supramolecular nanofibers.

View Article and Find Full Text PDF