Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
October 2023
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner.
View Article and Find Full Text PDFObjective: To identify candidate neuroimaging and genetic biomarkers for Alzheimer's disease (AD) and other brain disorders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS).
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
February 2021
The pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disease, is still unknown. It is difficult to determine the atrophy areas, especially for patients with mild cognitive impairment (MCI) at different stages of AD, which results in a low diagnostic rate. Therefore, an early diagnosis model of AD based on 3-dimensional convolutional neural network (3DCNN) and genetic algorithm (GA) was proposed.
View Article and Find Full Text PDF