Background: CEACAM5 and CEACAM6 are glycosylphosphatidylinositol (GPI)- linked members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which are frequently upregulated in epithelial cancers where they contribute to invasion, metastasis, immune evasion, and resistance to anoikis. CT109 is a novel antibody with dual specificity to both CEACAM5 and 6.
Objectives: In this study, we aimed to perform the preclinical characterization of CT109 and antibody- drug conjugate (ADCs) derivatives of CT109, focusing on CT109-SN-38.
To study the regulation of colorectal adenocarcinoma progression by -GlcNAc, we have focused on the -GlcNAc-mediated epigenetic regulation of human colon cancer stem cells (CCSC). Xenograft tumors from colon tumor cells with -linked -acetylglucosamine transferase (OGT) knockdown grew significantly slower than those formed from control cells, indicating a reduced proliferation of tumor cells due to inhibition of OGT expression. Significant reduction of the CCSC population was observed in the tumor cells after OGT knockdown, whereas tumor cells treated with the -GlcNAcase inhibitor showed an increased CCSC population, indicating that -GlcNAc levels regulated the CCSC compartment.
View Article and Find Full Text PDFAdv Cancer Res
December 2015
Changes in glycosylation have been implicated in various human diseases, including cancer. Research over the past few decades has produced significant findings that illustrate the importance of cancer-specific alterations in glycosylation in the regulation of tumor formation and metastasis. The identification of glycan-based biomarkers and strategies targeting specific glycan epitopes on the tumor cell surface has become one of the widely pursued research areas.
View Article and Find Full Text PDFDeletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity.
View Article and Find Full Text PDFChanges in the levels of N-acetylglucosaminyltransferase V (GnT-V) can alter the function of several types of cell surface receptors and adhesion molecules by causing altered N-linked glycan branching. Using a her-2 mammary tumor mouse model, her-2 receptor signaling was down-regulated by GnT-V knock-out, resulting in a significant delay in the onset of her-2-induced mammary tumors. To identify the genes that contributed to this GnT-V regulation of early events in tumorigenesis, microarray analysis was performed using her-2 induced mammary tumors from wild-type and GnT-V-null mice.
View Article and Find Full Text PDFWe present direct evidence that the N-glycosylation state of neural cadherin impacts the intrinsic kinetics of cadherin-mediated intercellular binding. Micropipette manipulation measurements quantified the effect of N-glycosylation mutations on intercellular binding dynamics. The wild-type protein exhibits a two-stage binding process in which a fast, initial binding step is followed by a short lag and second, slower transition to the final binding stage.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
The expression of an enzyme, GnT-V, that catalyzes a specific posttranslational modification of a family of glycoproteins, namely a branched N-glycan, is transcriptionally up-regulated during breast carcinoma oncogenesis. To determine the molecular basis of how early events in breast carcinoma formation are regulated by GnT-V, we studied both the early stages of mammary tumor formation by using 3D cell culture and a her-2 transgenic mouse mammary tumor model. Overexpression of GnT-V in MCF-10A mammary epithelial cells in 3D culture disrupted acinar morphogenesis with impaired hollow lumen formation, an early characteristic of mammary neoplastic transformation.
View Article and Find Full Text PDFChanges in the expression of N-glycan branching glycosyltransferases can alter cell surface receptor functions, involving their levels of cell surface retention, rates of internalization into the endosomal compartment, and subsequent intracellular signaling. To study in detail the regulation of signaling of the EGF receptor (EGFR) by GlcNAcbeta(1,6)Man branching, we utilized specific siRNA to selectively knockdown GnT-Va expression in the highly invasive human breast carcinoma line MDA-MB231, which resulted in the attenuation of its invasiveness-related phenotypes. Compared to control cells, ligand-induced downregulation of EGFR was significantly inhibited in GnT-Va-suppressed cells.
View Article and Find Full Text PDFWe isolated mouse embryo fibroblasts (MEFs) from N-acetylglucosaminyltransferase Va (GnT-Va) knockout mice and studied the effects of loss of expression of GnT-Va on asparagine-linked glycans (N-glycan) synthesis and the gene expression of groups of glycosyltransferases and galectins. Loss of GnT-Va expression caused aberrant expression of several N-glycan structures, including N-linked beta(1,6) branching, poly-N-lactosamine, bisecting N-acetylglucosamine (GlcNAc) and sialic acid. Using quantitative reverse transcriptase-PCR (qRT-PCR), altered gene expression of several groups of glycosyltransferases and galectins was observed in GnT-Va null MEFs, supporting the observed changes in N-glycan structures.
View Article and Find Full Text PDFChanges in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected.
View Article and Find Full Text PDFN-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model.
View Article and Find Full Text PDFAn N-linked glycan often increased during oncogenic transformation contains beta(1,6)-linked GlcNAc, synthesized by the N-acetylglucosaminyltransferase V (GnT-V). The progression of polyoma middle T-antigen oncoprotein-induced mammary carcinomas in GnT-V null mice was significantly retarded compared with that observed in wild-type mice. The matrix adhesion of mouse embryonic fibroblasts (MEF) from GnT-V null and wild-type mice was investigated to understand the mechanism by which deletion of GnT-V could retard tumor progression.
View Article and Find Full Text PDFVacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect.
View Article and Find Full Text PDFThe relations between the structure of cell surface N-glycans to cell behaviors were studied in H7721 human hepatocarcinoma cell line, which predominantly expressed complex-type N-glycans on the surface. 1-Deoxymannojirimycin (DMJ) and swaisonine (SW), the specific inhibitor of Golgi alpha-mannosidase II or I, were selected to block the processing of N-glycans at the steps of high mannose and hybrid type respectively. All-trans retinoic acid (ATRA) and antisense cDNA of N-acetylglucosaminyltransferase-V (GnT-V) were used to suppress the expression of GnT-V and decreased the GlcNAc beta1,6-branching or tri-/tetra-antennary structure of surface N-glycans.
View Article and Find Full Text PDFA common glycan alteration in transformed cells and human tumors is the highly elevated levels of N-linked beta(1,6)glycans caused by increased transcription of N-acetylglucosaminyltransferase V (GnT-V). Here, we define the involvement of GnT-V in modulation of homotypic cell-cell adhesion in human fibrosarcoma HT1080 and mouse NIH3T3 cells. Increased GnT-V expression resulted in a significant decrease in the rates of calcium-dependent cell-cell adhesion.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2003
The expressions of integrin alpha5, beta1, and alpha6 were studied in H7721 cells by means of flow cytometric and RT-PCR method after transfected with sense and antisense cDNA of N-acetylglucosaminyltransferase V (GnT-V). The transfected cells were characterized by Northern blot. It was found that the order of expression from high to low was beta1>alpha5>alpha6.
View Article and Find Full Text PDFAltered expression of cell surface N-linked oligosaccharides is associatedwith the oncogenic transformation of many types of animal cells. One of the most common forms of glycosylation in transformed cells and human tumors is the highly elevated beta1,6 branching of N-linked oligosaccharides caused by increased transcription of N-acetylglucosaminyltransferase V (GnT-V). To characterize the effects of increased beta1,6 branching on cell-matrix adhesion-mediated phenotypes, human fibrosarcoma HT1080 cells were transfected with retroviral systems encoding GnT-V that used both noninducible and tetracycline-inducible promoters.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 1998
The essential groups of three N-acetylglucosaminyltransferases (GnTs) of rat kidney were studied by using chemical modification and substrate protection methods. It was found that the amino and indolyl groups were the common essential groups of GnT-III, GnT-IV and GnT-V. Amino group was proposed to participate in the binding of common donor substrate--UDP-GlcNAc.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 1998
The effects of the epidermal growth factor (EGF), a stimulator of tyrosine protein kinase (TPK), and phorblol-12-myristate-13-acetate (PMA), a stimulator of protein kinase C (PKC), on the activity of N-acetylglucosaminyltransferase V (GnT-V) were studied in human hepatocarcinoma cell line 7721 in order to elucidate the regulation of TPK and PKC on GnT-V. It was found that the GnT-V activity obviously increased after treatment of the cells with EGF or PMA for 48 h. A non-specific protein kinase inhibitor, quercetin, inhibited the activities of TPK and PKC(inhibited mainly the membranous TPK and PKC)as well as GnT-V simulatanously.
View Article and Find Full Text PDF