Reducing the use of chemical inputs is becoming a major challenge in developing sustainable agriculture. Fungi, known as biocontrol agents (BCAs) and biofertilisers, are crucial in scientific research and are celebrated for their efficacy, eco-friendliness, and multifaceted roles. In this study, a bibliometric analysis was conducted on 5349 articles related to fungi as BCAs and biofertilisers over the past half-century using the Web of Science Core Collection (WoSCC) database.
View Article and Find Full Text PDFMicroalgal-bacterial biofilms are a competitive wastewater treatment technology. This study investigated the impact of photoperiod on the characteristics and performance of these biofilms in treating pig farm wastewater. Under continuous lighting (L-24h), we observed optimal NH-N removal efficiency, minimal chlorophyll levels, and peak concentrations of polysaccharides and c-di-GMP.
View Article and Find Full Text PDFFood waste (FW) from large dining facility has been a pressing environmental challenge in China recently. This study developed an innovative species-specific feeding strategy for producing pigeon meat and excellent manure from FW. Adding FW to the feed of pigeons significantly increased their feed intake and promoted their growth although the pigeons showed a strong aversion to the FW.
View Article and Find Full Text PDFMicrobial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.
View Article and Find Full Text PDFThe treatment of cooking oil wastewater is an urgent issue need to be solved. We aimed to screen for efficient oil-degrading bacteria and develop a new microbial agent for degrading waste cooking oil in oily wastewater. Three extremely effective oil-degrading bacteria, known as YZQ-1, YZQ-3, and YZQ-4, were found by the enrichment and acclimation of samples from various sources and separation using oil degradation plates.
View Article and Find Full Text PDFThis work aims to investigate the effective removal of oil in food waste (FW). Two bacteria, and , were obtained under high temperature conditions and named YZQ-2 and YZQ-5, respectively. The oil degradation rate of two bacteria was explored under different pH value, temperature, and NaCl concentration.
View Article and Find Full Text PDFWaste classification management is effective in addressing the increasing waste output and continuous deterioration of environmental conditions. The waste classification behaviour of resident is an important basis for managers to collect and allocate resources. Traditional analysis methods, such as questionnaire, have limitations considering the complexity of individual behaviour.
View Article and Find Full Text PDFRemoving erythromycin from the environment is a major challenge. In this study, a dual microbial consortium (Delftia acidovorans ERY-6A and Chryseobacterium indologenes ERY-6B) capable of degrading erythromycin was isolated, and the erythromycin biodegradation products were studied. Coconut shell activated carbon was modified and its adsorption characteristics and erythromycin removal efficiency of the immobilized cells were studied.
View Article and Find Full Text PDFWastewater storage before reuse is regulated in some countries. Investigations of pathogens and antibiotic resistance genes (ARGs) during wastewater storage are necessary for lowering the risks for wastewater reuse but are still mostly lacking. This study aimed to investigate pathogens, including harmful plant pathogens, and ARGs during 180 d of swine wastewater (SWW) storage in an anaerobic storage experiment.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2022
Soil microbial biomass (SMB) and soil microbial communities (SMCs) are the key factors in soil health and agricultural sustainability. We hypothesized that low bioavailable carbon (C) and energy were the key limiting factors influencing soil microbial growth and developed a new fertilization system to address this: the simultaneous application of mineral fertilizers and high-energy-density organic amendments (HED-OAs). A microcosm soil incubation experiment and a subsp.
View Article and Find Full Text PDFMicrobial bioremediation offers a solution to the problem of residual antibiotics in wastewater associated with animal farms. Efficient degradation of antibiotic residues depends upon the genetic make-up of microbial degraders, which requires a comprehensive understanding of the degradation mechanisms. In this study, a novel, efficient tylosin (TYL)-degrading bacterium, Providencia stuartii TYL-Y13 (Y13) was isolated, which could completely degrade 100 mg/L TYL within 15 h under optimal operating conditions at 40 ℃, pH 7.
View Article and Find Full Text PDFTylosin is widely used in livestock; however, the release of tylosin through animal manure can cause serious environmental problems. In this study, a new tylosin-degrading strain, TYL-T1, was isolated. Its phylogenetic similarity to Klebsiella oxytoca was found to be 99.
View Article and Find Full Text PDFFood waste is a potential resource to prepare microbial fertilizer. However, functional microorganisms derived from the food waste compost (FWC) are relatively lacking. We have isolated, identified, characterized and optimized a high-yielding indole-3-acetic acid (IAA) strain from FWC and further evaluated its growth promoting effect on plants.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2022
Oxidases are a group of oxidoreductases and need molecular oxygen in the catalytic process. Vitreoscilla hemoglobin (VHb) can improve the growth and productivity of host cells under hypoxic conditions, rendering it attractive for industrial application. In this work, we demonstrated the addition of immobilized VHb increased the catalytic activity of immobilized D-amino acid oxidase of Trigonopsis variabilis by two-fold when catalyzing cephalosporin C under oxygen-limited conditions.
View Article and Find Full Text PDFThe development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature.
View Article and Find Full Text PDFWaste produced in various fields and activities in society has been increasing, thereby causing immediate environmental harm and a serious-global problem. Recently, the attitude towards waste has changed along with innovations making waste as a new resource. Agricultural and forestry wastes (AFWs) are globally produced in huge amounts and thought to be an important resource to be used for decreasing the dependence on fossil fuels.
View Article and Find Full Text PDFJ Hazard Mater
February 2021
Microbial degradation is an important option for combating antibiotic pollution. Arthrobacter nicotianae OTC-16 was isolated as a novel tetracycline-degrading bacterium, which could degrade oxytetracycline/tetracycline (OTC/TET). Toxicity assessment indicated that this bacterium effectively converted OTC into byproducts with less toxicity to bacterial and algal indicators.
View Article and Find Full Text PDFDissolved organic matter (DOM) has an important effect on soil fertility, activity of microorganisms and transport of contaminants. In this study, DOM released by the hydrochar and biochar prepared under various conditions from pig manure, was assessed using a combination of UV-Visible spectroscopy, fluorescence excitation-emission (EEM) spectrophotometry and H-nuclear magnetic resonance (H NMR). The dissolved organic carbon (DOC) extracted from the hydrochar and biochar ranged from 3.
View Article and Find Full Text PDFLignocellulosic biomass provides attractive nonfood carbohydrates for the production of ethanol, and dilute acid pretreatment is a biomass-independent process for access to these carbohydrates. However, this pretreatment also releases volatile and nonvolatile inhibitors of fermenting microorganisms. To identify unique gene products contributing to sensitivity/tolerance to nonvolatile inhibitors, ethanologenic Escherichia coli strain LY180 was adapted for growth in vacuum-treated sugarcane bagasse acid hydrolysate (VBHz) lacking furfural and other volatile inhibitors.
View Article and Find Full Text PDFHydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural.
View Article and Find Full Text PDFEscherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain now ferments 10% xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% xylose.
View Article and Find Full Text PDFExpression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters.
View Article and Find Full Text PDFFurfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol.
View Article and Find Full Text PDF