Publications by authors named "Hua-ping Peng"

There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc, Gd, Lu, Y, Ce, Pr, Yb, Dy, Tm, Sm, Ho, Tb, La, and Eu), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform.

View Article and Find Full Text PDF

Developing sensor arrays capturing comprehensive fluorescence (FL) spectra from a single probe is crucial for understanding sugar structures with very high similarity in biofluids. Therefore, the analysis of highly similar sugar' structures in biofluids based on the entire FL of a single nanozyme probe needs more concern, which makes the development of novel alternative approaches highly wanted for biomedical and other applications. Herein, a well-designed deep learning model with intrinsic information of 3D FL of CuO nanoparticles (NPs)' oxidase-like activity was developed to classify and predict the concentration of a group of sugars with very similar chemical structures in different media.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional antibiotics are becoming less effective due to drug-resistant bacteria, creating a need for new antibacterial treatments.
  • Researchers developed 6-Aza-2-thiothymine-decorated gold nanoclusters (ATT-AuNCs) that show strong antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) and work by generating reactive oxygen species (ROS) to kill bacteria.
  • ATT-AuNCs not only disrupt important protein functions in MRSA but also have the potential to promote wound healing, making them a promising alternative to traditional antibiotics for combating resistant infections.
View Article and Find Full Text PDF

Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations.

View Article and Find Full Text PDF

Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs.

View Article and Find Full Text PDF

Different acquisition data approaches have been used to fetch the fluorescence spectra. However, the comparison between them is rare. Also, the extendability of a sensor array, which can work with heavy metal ions and other types of analytes, is scarce.

View Article and Find Full Text PDF

Chitosan modification has attracted considerable interest in the nanozyme field last decade. As a chitosan derivative, carboxylated chitosan (CC) has been less explored. Herein, PtNPs with an average size of approximately 3.

View Article and Find Full Text PDF

A surge of nanozymes with oxidase-like activities is emerging in various fields, whereas nanozymes with the ability to catalyze the oxidation of saccharides have less been explored. Herein, CuO nanoparticles (NPs) with phosphate-supported fructose oxidase-like activity have been reported. Notably, reactive oxygen species (ROS) have been confirmed as the products during the process.

View Article and Find Full Text PDF

Vitamin B derivatives (VB6Ds) are of great importance for all living organisms to complete their physiological processes. However, their excess in the body can cause serious problems. What is more, the qualitative and quantitative analysis of different VB6Ds may present significant challenges due to the high similarity of their chemical structures.

View Article and Find Full Text PDF

As a kind of sensing and imaging fluorescent probe with the merit of low toxicity, good stability, and environment-friendly, silicon nanoparticles (SiNPs) are currently attracting extensive research. In this work, we obtained mitoxantrone-SiNPs (MXT-SiNPs) with green emission by one-pot synthesis under mild temperature condition. The antenna based on pyridoxal phosphate (PLP) was designed for light-harvesting to enhance the luminescence of MXT-SiNPs and to establish a novel sensing strategy for alkaline phosphatase (ALP).

View Article and Find Full Text PDF

Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay.

View Article and Find Full Text PDF

Heavy metal ions (HMIs), including Cu, Ag, Cd, Hg, and Pb from the environment pose a threat to human beings and can cause a series of life-threatening diseases. Therefore, colorimetric sensors with convenience and flexibility for HMI discrimination are still required. To provide a solution, a peroxidase-like activity-based colorimetric sensor array of citrate-capped noble metal nanozymes (osmium, platinum, and gold) has been fabricated.

View Article and Find Full Text PDF

Extensive studies have laid the groundwork for understanding peroxidase-like nanozymes. However, improvements are still required before their practical applications. On one hand, it is significant to explore highly reactive nanozymes.

View Article and Find Full Text PDF

The preparation of boron-carbon-oxygen (BCO)-based heterostructure needs commonly high temperature, high pressure and/or auxiliary strong oxidant. And the BCO-based probe for the sensing application is still rare owing to their few active groups, low quantum yield or missing specificity. Exploring BCO-based heterostructured probe via simple routes and application in sensing, therefore, is highly challenging.

View Article and Find Full Text PDF

Assays for detecting tetanus toxoid are of great significance to be applied in the research of the safety testing of tetanus vaccine. Currently, guinea pigs or mice are usually used to evaluate the toxicity in these assays. Herein, a facile and quick biomineralization process was carried out to generate tetanus human immunoglobulin G (Tet-IgG)-functionalized Au nanoclusters (Tet-IgG-AuNCs).

View Article and Find Full Text PDF

Although metal nanoclusters (MNCs) have shown great promise for the further development of photochemical techniques to be applied in diverse areas (e.g., photoelectronic devices, photochemical sensors, photocatalysts, and energy storage and conversion systems), the fundamental problem of their electron transfer behavior still remains unsolved.

View Article and Find Full Text PDF

The use of metal ions to bridge the fluorescent materials to target analytes has been demonstrated to be a promising way to sensor design. Herein, the effect of rare-earth ions on the fluorescence of l-methionine-stabilized gold nanoclusters (Met-AuNCs) was investigated. It was found that europium (Eu) can significantly suppress the emission of Met-AuNCs, while other rare-earth ions showed a negligible impact.

View Article and Find Full Text PDF

With a rapid advancement of nanotechnology and the close integration of disciplines, research on nanozymes (nanomaterials with enzyme-like activities), is becoming an expeditiously developing field. In recent years, platinum group element (PGE)-based (Pt, Pd, Ru, Rh, Ir, and Os) nanozymes developed successively, have not only promoted the research of nanozymes but also expanded the biomedical applications of nanomaterials. Generally speaking, PGE-based nanozymes process high catalytic efficiency, specific surface area, stability, and other physical/chemical properties, which benefit for their applications in biosensing, biological medicine, biomedical imaging, and environmental protection.

View Article and Find Full Text PDF

There is a continuing high demand to design effective sensors for the determination of heavy metal ions (HMIs) since they are hazardous to both human health and the environment. In this study, we reported a facile fluorescent sensor array for rapid discrimination of HMIs based on a single gold nanocluster (AuNC) probe. This AuNC probe was prepared by using 2-mercapto-1-methylimidazole (MMI) as a ligand and polyvinypyrrolidone (PVP) as a dispersing agent.

View Article and Find Full Text PDF

Platinum nanozymes exhibiting highly efficient and robust oxidase-like activity are successfully synthesized and modified using sodium alginate (SA-PtNPs). According to a steady-state dynamic assay, Michaelis-Menton constant ( ) is calculated as 11.6 μM, indicating that the affinity of SA-PtNPs toward the substrate, 3, 3', 5, 5'-tetramethylbenzidine (TMB), is high.

View Article and Find Full Text PDF

As a new emerging candidate for solid-state phosphors, copper nanoclusters (CuNCs) have gained tremendous interest in the field of white light-emitting devices (WLEDs). However, their further applications are impeded by the low photoluminescence quantum yield (PLQY) and poor emission color tunability of CuNCs. This work demonstrates the synthesis of cyan and orange emitting CuNCs, and their combination as color conversion phosphors in WLEDs.

View Article and Find Full Text PDF

Herein, we report the design of a single-excitation/double-emission ratiometric fluorescence nanosensor for the determination of glucose. The sensing system combines glucose oxidation catalyzed by glucose oxidase, Fenton chemistry, Fe-sensitive fluorescent gold nanoclusters (AuNCs), and Fe-inert fluorescent graphene quantum dots (GQDs). We used orange-fluorescent AuNCs co-modified with bovine serum albumin and 3-mercaptopropionic acid as the indicator probe, and GQDs with the same excitation wavelength as the BSA/MPA-AuNCs, but with different emission wavelength, as the reference probe.

View Article and Find Full Text PDF

Various types of bovine serum albumin (BSA)-protected fluorescent gold nanoclusters (BSA-AuNCs) have been fabricated and applied in various fields. However, the conventional synthesis methods for BSA-AuNCs usually yield a low photoluminescence quantum yield (PLQY) in solution. In this study, we systematically examined the influences of incubation time, temperature, and pH on the formation process of BSA-AuNCs and then developed a novel strategy to synthesize BSA-AuNCs with PLQY (26%), far exceeding that of existing counterparts.

View Article and Find Full Text PDF

Protein-supported nanoparticles have a great significance in scientific and nanotechnology research because of their "green" process, low cost-in-use, good biocompatibility, and some interesting properties. Ruthenium oxide nanoparticles (RuONPs) have been considered to be an important member in nanotechnology research. However, the biosynthetic approach of RuONPs is relatively few compared to those of other nanoparticles.

View Article and Find Full Text PDF

In recent years, gold nanoclusters (AuNCs) have received considerable attention as optical transducers in chemo/biosensors. Herein, a facile and efficient assay for NO has been successfully developed based on the fluorescence quenching of AuNCs co-modified by bovine serum albumin and 3-mercaptopropionic acid (BSA/MPA-AuNCs). In the presence of NO under acidic conditions, Fe can be readily oxidized and transformed to Fe, which can significantly suppress the fluorescence of BSA/MPA-AuNCs via non-radiative electron-transfer mechanism.

View Article and Find Full Text PDF