Publications by authors named "Hua-min Liang"

Background: Alzheimer's disease (AD) is a persistent neuropathological injury that manifests via neuronal/synaptic death, age spot development, tau hyperphosphorylation, neuroinflammation, and apoptosis. Synapsin 1 (SYN1), a neuronal phosphoprotein, is believed to be responsible for the pathology of AD.

Objective: This study aimed to elucidate the exact role of SYN1 in ameliorating AD and its potential regulatory mechanisms.

View Article and Find Full Text PDF

Interleukin 6 (IL-6), an important component of cardiac microenvironment, favors cardiac repair by improving cardiomyocyte regeneration in different models. This study aimed to investigate the effects of IL-6 on stemness maintenances and cardiac differentiation of mouse embryonic stem cells (mESCs). The mESCs were treated with IL-6 for two days, and then subjected to CCK-8 essay for proliferation analysis and quantitative real-time PCR (qPCR) to evaluate the mRNA expression of genes related to stemness and germinal layers differentiation.

View Article and Find Full Text PDF

The study aims to investigate the effects of cardiac fibroblast (CF) paracrine factors on murine embryonic stem cells (ESCs). Conditioned mediums from either neonatal cardiac fibroblasts (ConM-NCF) or adult cardiac fibroblasts (ConM-ACF) were diluted by 1:50 and 1:5, respectively, to investigate whether these conditioned mediums impact murine ESCs distinctly with RT-real time PCR techniques, cell proliferation essay, ELISA and by counting percentage of beating embryoid bodies (EBs) during ESCs differentiation. The data showed that the paracrine ability of CFs changed dramatically during development, in which interleukin 6 (IL6) increased with maturation.

View Article and Find Full Text PDF

Background: Little is known about the clinical significance of upper esophageal sphincter (UES) motility disorders and their association with the treatment response of type II achalasia. None of the three versions of the Chicago Classification of Esophageal Motility Disorders has defined UES abnormality metrics or their function. UES abnormalities exist in some patients and indicate a clinically significant problem in patients with achalasia.

View Article and Find Full Text PDF

This study aimed to examine the functional role of microRNA-20 (miR-20) and its potential target, Kir6.1, in ischemic myocardiocytes. The expression of miR-20 was detected by real-time PCR.

View Article and Find Full Text PDF

Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs.

View Article and Find Full Text PDF

Cirrhotic rats show higher expression levels of hepatic RhoA and Rho-kinase than normal healthy rats, and the activation of this signaling pathway leads to portal hypertension. Sodium ferulate (SF) has been shown to decrease the production of geranylgeranyl pyrophosphate (GGPP), a substance essential for RhoA activation. In the present study, to investigate the effects of SF on fibrosis, portal hypertension and the RhoA/Rho-kinase pathway, hepatic cirrhosis was induced in rats by bile duct ligation.

View Article and Find Full Text PDF

This study is to explore a new method of investigating molecular basis for electrophysiological properties of early fetal cardiomyocytes. Single embryonic cardiomyocytes of mouse early developmental heart (E10.5) were obtained by a collagenase B digestion approach.

View Article and Find Full Text PDF

Cavernous transformation of the portal vein (CTPV) is not quite common in adults, and cases with CTPV and acute liver abscess are lacking. We report a patient with CTPV inducing extrahepatic and intrahepatic obstruction, finally leading to acute liver abscess due to bile duct infection. We aim to find out the possible relationship between CTPV and acute liver abscess.

View Article and Find Full Text PDF

Aim: To study the effects and mechanisms by which hyposmotic challenge modulate function of L-type calcium current (I(Ca,L)) in rat ventricular myocytes.

Methods: The whole-cell patch-clamp techniques were used to record I(Ca,L) in rat ventricular myocytes.

Results: Hyposmotic challenge(∼220 mosmol/L) induced biphasic changes of I(Ca,L), a transient increase followed by a sustained decrease.

View Article and Find Full Text PDF

In our studies, we have applied a novel tool, microelectrode arrays (MEA), to investigate the electrophysiological properties of murine embryonic hearts in vitro. The electrical signals were recorded from the areas of the heart adhering to the 60 MEA electrodes, being called field potentials (FPs). As an extracelluar recording, the waveform of the FP appeared similar to a reversed action potential obtained from single cell by whole cell current clamp and the FP duration was comparable with the action potential duration.

View Article and Find Full Text PDF

We isolated mouse embryonic cardiomyocytes derived from timed-pregnant females at different periods and used patch-clamp technique to investigate the muscarinic cholinergic modulation of pacemaker current I(f) in different developmental stages. In early development stage (EDS), muscarinic agonist carbachol (CCh) significantly decreased the magnitude of the pacemaker current I(f) but had no effect in late development stage (LDS). Forskolin (a direct adenylate cyclase activator) and IBMX (a non-selective phosphodiesterase inhibitor) increased I(f) in both EDS and LDS cells.

View Article and Find Full Text PDF

Aim: To investigate the muscarinic regulation of L-type calcium current (I(Ca-L)) during development.

Methods: The whole cell patch-clamp technique was used to record II(Ca-L) in mice embryonic cardiomyocytes at different stages (the early developmental stage, EDS; the intermediate developmental stage, IDS; and the late developmental stage, LDS). Carbachol (CCh) was used to stimulate M-receptor in the embryonic cardiomyocytes of mice.

View Article and Find Full Text PDF

To explore the electrophysiological characteristics of embryonic cardiomyocytes, single embryonic cardiomyocytes were obtained from mice at different periods by a collegenase B digestion approach, whole cell patch clamp recording technique was used to record I(f) and I(Ca-L), and spontaneous action potential was also recorded. The morphological and spontaneous contractile properties of the isolated cells appeared to be typical embryonic cardiomyocytes when the cells were assessed by phase-contrast microscope. Whole cell recording of isolated cells is easily performed by the whole cell patch clamp technique.

View Article and Find Full Text PDF

The hyperpolarization-activated current (I(f)) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore we studied developmental changes in functional expression and beta-adrenergic regulation of I(f) in embryonic mouse heart. The expression of I(f) is high in early developmental stage (EDS) (10.

View Article and Find Full Text PDF