The KRAS mutant has emerged as an important therapeutic target in recent years. Covalent inhibitors have shown promising antitumor activity against KRAS-mutant cancers in the clinic. In this study, a structure-based and focused chemical library analysis was performed, which led to the identification of 143D as a novel, highly potent and selective KRAS inhibitor.
View Article and Find Full Text PDFInhibitors targeting the antiapoptotic molecule BCL-2 have therapeutic potential for the treatment of acute myeloid leukaemia (AML); however, BCL-2 inhibitors such as venetoclax exhibit limited monotherapy efficacy in relapsed or refractory human AML. PI3Kδ/AKT signalling has been shown to be constitutively active in AML patients. Here, we demonstrate that the combination of BCL-2 and PI3Kδ inhibitors exerts synergistic antitumour effects both and in AML.
View Article and Find Full Text PDFThe B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1-3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2023
As important drug targets, G protein-coupled receptors (GPCRs) play pivotal roles in a wide range of physiological processes. Extensive efforts of structural biology have been made on the study of GPCRs. However, a large portion of GPCR structures remain unsolved due to structural instability.
View Article and Find Full Text PDFVV116 (JT001) is an oral drug candidate of nucleoside analog against SARS-CoV-2. The purpose of the three phase I studies was to evaluate the safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of VV116 in healthy subjects, as well as the effect of food on the pharmacokinetics and safety of VV116. Three studies were launched sequentially: Study 1 (single ascending-dose study, SAD), Study 2 (multiple ascending-dose study, MAD), and Study 3 (food-effect study, FE).
View Article and Find Full Text PDFAn epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment.
View Article and Find Full Text PDFThe COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC values of low nanomolar levels potently.
View Article and Find Full Text PDFAerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases.
View Article and Find Full Text PDFActa Pharmacol Sin
February 2022
Mantle cell lymphoma (MCL) is a lymphoproliferative disorder lacking reliable therapies. PI3K pathway contributes to the pathogenesis of MCL, serving as a potential target. However, idelalisib, an FDA-approved drug targeting PI3Kδ, has shown intrinsic resistance in MCL treatment.
View Article and Find Full Text PDFA series of 6-substituted carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators were discovered through 6-position modification guided by insights from the crystallographic profiles of the "short" inverse agonist 6. With the increase in the size of the 6-position substituents, the "short" inverse agonist 6 first reversed its function to agonists and then to "long" inverse agonists. The cocrystal structures of RORγt complexed with the representative "short" inverse agonist 6 (PDB: 6LOB), the agonist 7d (PDB: 6LOA) and the "long" inverse agonist 7h (PDB: 6LO9) were revealed by X-ray analysis.
View Article and Find Full Text PDFHuman infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China.
View Article and Find Full Text PDFSerine/threonine phosphatase (Stp1) is a member of the bacterial Mg- or Mn- dependent protein phosphatase/protein phosphatase 2C family, which is involved in the regulation of Staphylococcus aureus virulence. Aurintricarboxylic acid (ATA) is a known Stp1 inhibitor with an IC50 of 1.03 μM, but its inhibitory mechanism has not been elucidated in detail because the Stp1-ATA cocrystal structure has not been determined thus far.
View Article and Find Full Text PDFSMARCA2 is a critical catalytic subunit of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complexes. Dysregulation of SMARCA2 is associated with several diseases, including some cancers. SMARCA2 is multi-domain protein containing a bromodomain (BRD) that specifically recognizes acetylated lysine residues in histone tails, thus playing an important role in chromatin remodeling.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2018
Unlabelled: As a widely used anti-gout drug, benzbromarone has been found to induce hepatic toxicity in patients during clinical treatment. Previous studies have reported that benzbromarone is metabolized via cytochrome P450, thus causing mitochondrial toxicity in hepatocytes. In this study, we found that benzbromarone significantly aggravated hepatic steatosis in both obese db/db mice and high fat diet (HFD)-induced obese (DIO) mouse models.
View Article and Find Full Text PDFBackground: Our previous study has demonstrated that hepatocyte nuclear factor 1α (HNF1α) exerts potent therapeutic effects on hepatocellular carcinoma (HCC). However, the molecular mechanisms by which HNF1α reverses HCC malignancy need to be further elucidated.
Methods: lncRNA microarray was performed to identify the long noncoding RNAs (lncRNAs) regulated by HNF1α.
Aberrant activity of enhancer of zeste homolog 2 (EZH2) is associated with a wide range of human cancers. The interaction of EZH2 with embryonic ectoderm development (EED) is required for EZH2's catalytic activity. Inhibition of the EZH2-EED complex thus represents a novel strategy for interfering with the oncogenic potentials of EZH2 by targeting both its catalytic and non-catalytic functions.
View Article and Find Full Text PDFActa Pharmacol Sin
December 2017
Phosphoglycerate mutase 1 (PGAM1), an important enzyme in glycolysis, is overexpressed in a number of human cancers, thus has been proposed as a promising metabolic target for cancer treatments. The C-terminal portion of the available crystal structures of PGAM1 and its homologous proteins is partially disordered, as evidenced by weak electron density. In this study, we identified the conformational behavior of the C-terminal region of PGAM1 as well as its role during the catalytic cycle.
View Article and Find Full Text PDFAim: To establish a method for efficient expression and purification of the human serotonin type 3A receptor (5-HT3A) that is suitable for structural studies.
Methods: Codon-optimized cDNA of human 5-HT3A was inserted into a modified BacMam vector, which contained an IgG leader sequence, an 8×His tag linked with two-Maltose Binding Proteins (MBP), and a TEV protease cleavage site. The BacMam construct was used to generate baculoviruses for expression of 5-HT3A in HEK293F cells.
Background And Purpose: Matrine is a small molecule drug used in humans for the treatment of chronic viral infections and tumours in the liver with little adverse effects. The present study investigated its therapeutic efficacy for insulin resistance and hepatic steatosis in high-fat-fed mice.
Experimental Approach: C57BL/J6 mice were fed a chow or high-fat diet for 10 weeks and then treated with matrine or metformin for 4 weeks.
Considerable studies indicate huperzine A is a promising natural product to suppress neuronal damages induced by β-amyloid (Aβ), a key pathogenic event in the Alzheimer's disease (AD). As an extension, the present study for the first time explored whether the beneficial profiles of huperzine A against oligomeric Aβ(42) induced neurotoxicity are associated with the accumulation and detrimental function of intraneuronal/mitochondrial Aβ, on the basis of the emerging evidence that intracellular Aβ is more relevant to AD progression as compared with extracellular Aβ. Huperzine A treatment was shown to significantly attenuate the neurotoxicity of oligomeric Aβ(42), as demonstrated by increased neuronal viability.
View Article and Find Full Text PDFAim: A large number of drug-induced long QT syndromes are ascribed to blockage of hERG potassium channels. The aim of this study was to construct novel computational models to predict compounds blocking hERG channels.
Methods: Doddareddy's hERG blockage data containing 2644 compounds were used, which divided into training (2389) and test (255) sets.
Based on the character of the molecular structure, the prodrugs of phosphates and phosphonates were divided into two categories. The first is the drug which contained the phosphate group, introducing protected groups to increase lipophilicity and improve bioavailability. The other one is the drug which had no phosphate group, introducing the phosphate group into molecules to enhance the solubility, regulate the distribution coefficient and enhance the drug-like property.
View Article and Find Full Text PDFAim: To investigate the molecular mechanisms underlying the influence of DNA polymerase from different genotypes of hepatitis B virus (HBV) on the binding affinity of adefovir (ADV).
Methods: Computational approaches, including homology modeling, docking, MD simulation and MM/PBSA free energy analyses were used.
Results: Sequence analyses revealed that residue 238 near the binding pocket was not only a polymorphic site but also a genotype-specific site (His238 in genotype B; Asn238 in genotype C).
The RhoA/ROCK inhibitors have emerged as a new promising treatment for cardiovascular diseases. Recently, we first reported a series of first-in-class small molecular RhoA inhibitors and a chemical compound named HL07 showed high RhoA inhibition activities. In this study, we aimed to explore the pharmacological effect and possible mechanism of HL07 on agonists-induced vasoconstriction.
View Article and Find Full Text PDF