Publications by authors named "Hua-You Chen"

Spinal cord injury is a severe central nervous system disease, which will cause a series of complex pathophysiological changes and activate a variety of signaling pathways including Notch signaling. Studies have evidenced that activation of the Notch signaling pathway is not conducive to nerve repair and symptom improvement after spinal cord injury. Its mechanisms include inhibiting neuronal differentiation and axon regeneration, promoting reactive astrocyte proliferation, promoting M1 macrophage polarization and the release of proinflammatory factors, and inhibiting angiogenesis.

View Article and Find Full Text PDF

To understand how molecular damage under harsh environmental conditions can be controlled, we investigated the properties of ATPase activity of the chaperonin molecular machinery from the hyperthermophilic archaeon Pyrococcus furiosus (PfCPN). PfCPN ATPase activity depended on K(+) and Mg(2+) and its optimal pH was 7.5.

View Article and Find Full Text PDF

The chaperonin molecular machine from hyperthermophilic archaeon Pyrococcus furiosus was studied in this paper. The Pyrococcus furiosus chaperonin gene (PfCPN) was amplified by PCR from the Pyrococcus furiosus genomic DNA, and expressed in Escherichia coli BL21-Codonplus(DE)(3)-RIL. The recombinant PfCPN was purified to homogeneity by using ion-exchange and size-exclusion chromatography.

View Article and Find Full Text PDF