Publications by authors named "Hua-Yi Hsu"

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

Wearable skin-inspired electronic skins present remarkable outgrowth in recent years because their promising comfort device integration, lightweight, and mechanically robust durable characteristics led to significant progresses in wearable sensors and optoelectronics. Wearable electronic devices demand real-time applicability and factors such as complex fabrication steps, manufacturing cost, and reliable and durable performances, severely limiting the utilization. Herein, we nominate a scalable solution-processable electrospun patterned candidate capable of forming ultralong mechanically robust nano-microdimensional fibers with higher uniformity.

View Article and Find Full Text PDF

Self-organized dendritic architecture is of fundamental importance and its application can be used in many natural and industrial processes. Nanopost arrays are usually used in the applications of reflecting grating and changing the material surface wettability. However, in recent research, it is found that nanopost arrays can be fabricated as passive components to induce the dendritic self-organizaed hierarchical architectures.

View Article and Find Full Text PDF

Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model.

View Article and Find Full Text PDF

Targeting thymidylate kinase (TMPK) that catalyzes the phosphotransfer reaction for formation of dTDP from dTMP is a new strategy for anticancer treatment. This study is to understand the inhibitory mechanism of a previously identified human TMPK (hTMPK) inhibitor YMU1 (1a) by molecular docking, isothermal titration calorimetry, and photoaffinity labeling. The molecular dynamics simulation suggests that 1a prefers binding at the catalytic site of hTMPK, whereas the hTMPK inhibitors that bear pyridino[d]isothiazolone or benzo[d]isothiazolone core structure in lieu of the dimethylpyridine-fused isothiazolone moiety in 1a can have access to both the ATP-binding and catalytic sites.

View Article and Find Full Text PDF

There are contradictory published data on the behavior of fluid slip at high shear rates. Using three methodologies (molecular dynamics simulations, an analytical theory of slip, and a Navier-Stokes-based calculation) covering a range of fluids (bead-spring liquids, polymer solutions, and ideal gas flows) we show that as shear rate increases, the amount of slip, as measured by the slip length, asymptotes to a constant value. The results clarify the molecular mechanics of how slip occurs.

View Article and Find Full Text PDF