A novel metal-organic framework (MOF) host-guest material [Cd(EtOIPA)(HAD)]·HO has been successfully synthesized by the reaction of 5-ethoxyisophthalic acid (EtOIPA), acridine (AD) and Cd(II) salts under hydrothermal conditions. Structurally, the title MOF possesses a trinucleate Cd(II) based 2D double-layer with the protonated AD cations as the template encapsulated into the grids. The combination of experiments and theoretical calculations reveals that the orderly arrangement of EtOIPA dimers, protonated AD cations and trinucleate Cd(II) clusters generates highly delocalized π-electron channels with a prolonged exciton lifetime.
View Article and Find Full Text PDFThe relationship between the aggregation states of pyrene-based linkers and the photoluminescence/photoelectric performance was well studied by the formation of an anionic metal-organic framework, [BMI][Mg(TBAPy)(HO)]·2dioxane, which shows highly enhanced light-harvesting and photoelectric conversion efficiency by the encapsulation of D-π-A cation dyes.
View Article and Find Full Text PDFAn alkali-resistant Zn-MOF directed by [BMI]Br ionic liquid, (BMI)[Zn(ptptc)] (1), based on a π-electron-rich terphenyl-tetracarboxylic acid, has been synthesized under the combination of hydro/solvothermal and ionothermal condition (BMI = 1-butyl-3-methylimidazolium, Hptptc = -terphenyl-3,3'',5,5''-tetracarboxylic acid). In 1, the trinuclear Zn(ii) clusters are linked by the organic moieties of the ptptc ligands, resulting in a 3D anionic framework structure with highly disordered [BMI] cations filled in the pores. 1 exhibits good chemical stability in water and NaOH solutions (pH range of 7-12), which allow it to detect antibiotics and nitroaromatic explosives in an aquatic system.
View Article and Find Full Text PDFTwo pH-stable luminescent metal-organic frameworks (LMOFs), {[Ln(L)(OH)(HCOO)]·[HO]} (Ln = Eu 1, Tb 2), based on a new π-conjugated organic building block involving both carboxylate and terpyridine groups were rationally synthesized under a combination of hydro/solvothermal and ionothermal conditions (HL = 4'-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2':6',4''-terpyridine). 1 and 2 are isostructural and feature noninterpenetrated open 3D condensed frameworks constructed by rod-shaped lanthanide-carboxylate building units. Their excellent water-stability and pH-stability allow them to be used in aquatic systems.
View Article and Find Full Text PDFSeven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role.
View Article and Find Full Text PDF