Poly(ADP-ribose) polymerase 1 (PARP-1) is involved in multi-pathways to respond to DNA damage. Lack of or inhibition of PARP-1 activity leads to slow progress of cell cycle and sensitization of cells to different stresses. Recently, it was reported that besides the Ku dependent main nonhomologous end joining (NHEJ) pathway, there is a PARP-1 dependent complementary NHEJ pathway to repair DNA double strand break (DSB).
View Article and Find Full Text PDFFragile histidine triad (FHIT) gene deletion or promoter methylation and reduced Fhit protein expression occur in approximately 70% of human epithelial tumors and, in some cancers, are clearly associated with tumor progression. Specific Fhit signal pathways have not been identified. We previously reported that compared with Fhit+/+ cells, Fhit-/- cells with an overactivated ATR/CHK1 pathway show increased mutation frequency and resistance to DNA damage-induced killing, indicating that Fhit and the CHK1 pathway have opposing roles in cells responding to DNA damage.
View Article and Find Full Text PDFReactive oxygen species (ROS) are produced by all aerobic cells and have been implicated in the regulation of diverse cellular functions, including intracellular signaling, transcription activation, proliferation, and apoptosis. Salvicine, a novel diterpenoid quinone compound, demonstrates a broad spectrum of antitumor activities. Although salvicine is known to trap the DNA-topoisomerase II (Topo II) complex and induce DNA double-strand breaks (DSBs), its precise antitumor mechanisms remain to be clarified.
View Article and Find Full Text PDFSalvicine, a diterpenoid quinone compound, possesses potent in vitro and in vivo antitumor activity. Salvicine is a novel non-intercalative topoisomerase II poison. In this study salvicine induced evident DNA damage, which was further characterized as double-strand breaks mainly in MCF-7 human breast cancer cells.
View Article and Find Full Text PDF