Evacuation path optimization (EPO) is a crucial problem in crowd and disaster management. With the consideration of dynamic evacuee velocity, the EPO problem becomes nondeterministic polynomial-time hard (NP-Hard). Furthermore, since not only one single evacuation path but multiple mutually restricted paths should be found, the crowd evacuation problem becomes even challenging in both solution spatial encoding and optimal solution searching.
View Article and Find Full Text PDFThe control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA).
View Article and Find Full Text PDFCloud workflow scheduling is significantly challenging due to not only the large scale of workflow but also the elasticity and heterogeneity of cloud resources. Moreover, the pricing model of clouds makes the execution time and execution cost two critical issues in the scheduling. This paper models the cloud workflow scheduling as a multiobjective optimization problem that optimizes both execution time and execution cost.
View Article and Find Full Text PDFThis paper develops a decomposition-based coevolutionary algorithm for many-objective optimization, which evolves a number of subpopulations in parallel for approaching the set of Pareto optimal solutions. The many-objective problem is decomposed into a number of subproblems using a set of well-distributed weight vectors. Accordingly, each subpopulation of the algorithm is associated with a weight vector and is responsible for solving the corresponding subproblem.
View Article and Find Full Text PDF