Publications by authors named "Hua Zhu Ke"

Background: Fracture repair involves the reactivation of developmental signaling cascades, including Wnt signaling that stimulates bone formation and bone regeneration. Rodent data indicate that dual inhibition of the Wnt signaling antagonists sclerostin and Dickkopf-1 (DKK1) increases callus bone volume and strength while increasing bone mass systemically.

Methods: We evaluated the effects of 16 weeks of subcutaneously administered carrier solution (vehicle, VEH), anti-sclerostin antibody (Scl-Ab), anti-DKK1 antibody (DKK1-Ab), or Scl-Ab plus DKK1-Ab combination therapy (COMBO) on ulnar osteotomy healing in nonhuman primates (cynomolgus monkeys; 20 to 22 per group).

View Article and Find Full Text PDF

Objective: With the advances in biological technologies over the past 20 years, a number of new therapies to promote bone healing have been introduced. Particularly in the spinal surgery field, more unprecedented biological therapeutics become available to enhance spinal fusion success rate along with advanced instrumentation approaches. Yet surgeons may not have been well informed about their safety and efficacy profiles in order to improve clinical practices.

View Article and Find Full Text PDF

Background: Sclerosteosis, a severe autosomal recessive sclerosing skeletal dysplasia characterised by excessive bone formation, is caused by absence of sclerostin, a negative regulator of bone formation that binds LRP5/6 Wnt co-receptors. Current treatment is limited to surgical management of symptoms arising from bone overgrowth. This study investigated the effectiveness of sclerostin replacement therapy in a mouse model of sclerosteosis.

View Article and Find Full Text PDF

Sclerostin antibody romosozumab (EVENITY™, romosozumab-aqqg) has a dual mechanism of action on bone, increasing bone formation and decreasing bone resorption, leading to increases in bone mass and strength, and a decreased risk of fracture, and has been approved for osteoporosis treatment in patients with high risk of fragility fractures. The bone formation aspect of the response to sclerostin antibody treatment has thus far been best described as having two phases: an immediate and robust phase of anabolic bone formation, followed by a long-term response characterized by attenuated bone accrual. We herein test the hypothesis that following the immediate pharmacologic anabolic response, the changes in bone morphology result in altered (lesser) mechanical stimulation of the resident osteocytes, initiating a negative feedback signal quantifiable by a reduced osteocyte signaling response to load.

View Article and Find Full Text PDF

Prolonged mechanical unloading in bedridden patients and concurrent hormonal dysregulation represents the cause of one of the severest forms of osteoporosis, a condition for which there are very few efficacious interventions available to date. Sclerostin, a Wnt antagonist, acts as a negative regulator of bone formation. Sclerostin antibody (Scl-Ab)-mediated blockade of sclerostin can dramatically enhance bone formation and reduce bone resorption.

View Article and Find Full Text PDF

The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action.

View Article and Find Full Text PDF

To date, no efficacious therapy exists that will prevent or treat the severe osteoporosis in individuals with neurologically motor-complete spinal cord injury (SCI). Recent preclinical studies have demonstrated that sclerostin antibody (Scl-Ab) can prevent sublesional bone loss after acute SCI in rats. However, it remains unknown whether sclerostin inhibition reverses substantial bone loss in the vast majority of the SCI population who have been injured for several years.

View Article and Find Full Text PDF

Purpose Of Review: The development of therapeutics that target anabolic pathways involved in skeletogenesis is of great importance with regard to disease resulting in bone loss, or in cases of impaired bone repair. This review aims to summarize recent developments in this area.

Recent Findings: A greater understanding of how drugs that modulate signaling pathways involved in skeletogenesis exert their efficacy, and the molecular mechanisms resulting in bone formation has led to novel pharmacological bone repair strategies.

View Article and Find Full Text PDF

Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing.

View Article and Find Full Text PDF

Sclerostin antibody (Scl-Ab) restored bone mass and strength in the ovariectomized rat model of postmenopausal osteoporosis. Increased bone mineral density (BMD) and decreased skeletal fragility fracture risk have been reported in postmenopausal osteoporotic women receiving Scl-Ab. In males, loss of androgen leads to rapid decreases in BMD and an increased risk of fragility fractures.

View Article and Find Full Text PDF

Sustained elevation of parathyroid hormone (PTH) is catabolic to cortical bone, as evidenced by deterioration in bone structure (cortical porosity), and is a major factor for increased fracture risk in chronic kidney disease (CKD). Etelcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces PTH levels in subtotal nephrectomized (Nx) rats and in hemodialysis patients with secondary hyperparathyroidism (SHPT) in clinical studies; however, effects of etelcalcetide on bone have not been determined. In a rat model of established SHPT with renal osteodystrophy, etelcalcetide or vehicle was administered by subcutaneous (s.

View Article and Find Full Text PDF

Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength.

View Article and Find Full Text PDF

Sclerostin antibody (Scl-Ab) increases osteoblast activity, in part through increasing modeling-based bone formation on previously quiescent surfaces. Histomorphometric studies have suggested that this might occur through conversion of bone lining cells into active osteoblasts. However, direct data demonstrating Scl-Ab-induced conversion of lining cells into active osteoblasts are lacking.

View Article and Find Full Text PDF

There is an unmet need for therapies that can restore bone strength and reduce fracture risk among patients at high risk of osteoporotic fracture. To address this need, bone-forming therapies that increase osteoblast activity are required to help restore bone structure and strength. Sclerostin is now recognized as a target for osteoporosis therapy.

View Article and Find Full Text PDF

Results of prior studies suggest that fibroblast growth factor 21 (FGF21) may be involved in bone turnover and in the actions of peroxisome proliferator-activated receptor (PPAR) α and γ in mice. We have conducted independent studies to examine the effects of FGF21 on bone homeostasis and the role of FGF21 in PPARα and γ actions. High-fat-diet-induced obesity (DIO) mice were administered vehicle or recombinant human FGF21 (rhFGF21) intraperitoneally at 0 (vehicle), 0.

View Article and Find Full Text PDF

Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light-heavy chain pairing.

View Article and Find Full Text PDF

Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen.

View Article and Find Full Text PDF

Background: Recombinant human bone morphogenetic protein (rhBMP)-2 is a potent osteoinductive agent; however, its clinical use has been reduced because of safety and efficacy concerns. In preclinical studies involving a critical-sized defect in a rat model, sclerostin antibody (Scl-Ab) treatment increased bone formation within the defect but did not result in reliable healing. The purpose of the current study was to evaluate bone repair of a critical-sized femoral defect in a rat model with use of local implantation of rhBMP-2 combined with systemic administration of Scl-Ab.

View Article and Find Full Text PDF

Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action.

View Article and Find Full Text PDF

Introduction: Periodontitis and osteoporosis are bone destructive diseases with a high prevalence in the adult population. The concomitant presence of osteoporosis may be a risk factor of progression of periodontal destruction. We studied the effect of sclerostin-neutralizing monoclonal antibody (Scl-Ab) on alveolar bone endpoints in an ovariectomized (OVX) rat model of induced experimental periodontitis.

View Article and Find Full Text PDF

Background: The mechanical fixation of orthopaedic and dental implants is compromised by diminished bone volume, such as with osteoporosis. Systemic administration of sclerostin antibody (Scl-Ab) has been shown to enhance implant fixation in normal animals. In the present study, we tested whether Scl-Ab can improve implant fixation in established osteoporosis in a rat model.

View Article and Find Full Text PDF

In this study we investigated if Wnt/β-catenin signaling in mesenchymal progenitor cells plays a role in bone fracture repair and if DKK1-Ab promotes fracture healing through activation of β-catenin signaling. Unilateral open transverse tibial fractures were created in CD1 mice and in β-catenin(Prx1ER) conditional knockout (KO) and Cre-negative control mice (C57BL/6 background). Bone fracture callus tissues were collected and analyzed by radiography, micro-CT (μCT), histology, biomechanical testing and gene expression analysis.

View Article and Find Full Text PDF