Purpose: To determine whether using robots in spine surgery results in more clinical advantages and fewer adverse consequences.
Methods: Between October 1990 and October 2022, a computer-based search was conducted through the databases of PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure, China Biology Medicine, VIP databases, and WAN FANG. The study only included randomized controlled trials (RCTs) comparing the clinical efficacy and safety of robot-assisted surgery with those of conventional spine surgery.
Am J Physiol Heart Circ Physiol
July 2022
Cardiac fibrosis is thought to be the hallmark of pathological hypertrophic remodeling, of which the myofibroblast transdifferentiation is the key cell biological event. However, there is still no specific and effective therapeutic agent approved for cardiac fibrosis. To investigate the effects of belumosudil, the first ρ-associated kinase-2 (ROCK2)-specific inhibitor, on cardiac hypertrophy, fibrosis, and dysfunction induced by pressure overload, the transverse aortic constriction (TAC) or sham operation was carried out on wild-type C57BL/6 mice (male, 6-8 wk old) under pentobarbital anesthesia.
View Article and Find Full Text PDFBackground The early mortality after surgery for infective endocarditis is high. Although risk models help identify patients at high risk, most current scoring systems are inaccurate or inconvenient. The objective of this study was to construct an accurate and easy-to-use prediction model to identify patients at high risk of early mortality after surgery for infective endocarditis.
View Article and Find Full Text PDFThe development of flexible electronic skins with high performance and multifunctional sensing capabilities is of great significance for applications ranging from healthcare monitoring to artificial intelligence. To mimic and surpass the high-gauge-factor sensing properties of human skin, structure design and appropriate material selection of sensors are both essentially required. Here, we present an efficient, low-cost fabrication strategy to construct an ultra-highly sensitive, flexible pressure sensor by embedding the aligned nickel-coated carbon fibers (NICFs) in a polydimethylsiloxane (PDMS) substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Flexible pressure sensors have attracted intense attention because of their widespread applications in electronic skin, human-machine interfaces, and healthcare monitoring. Conductive porous structures are always utilized as active layers to improve the sensor sensitivities. However, flexible pressure sensors derived from traditional foaming techniques have limited structure designability.
View Article and Find Full Text PDFStretchable electrodes have a crucial impact on the development of flexible electronic systems. Most conventionally blended nanocomposite electrodes are incapable of achieving high stretchability, breathability, or durability. In this work, a highly conductive, breathable, and stretchable epidermal electrode (SEE) is demonstrated by designing a hierarchically interactive nano-network that is composed of elastic polymer nano-fibers and multi-level silver nano-wires (AgNWs).
View Article and Find Full Text PDFSkin sensors are of paramount importance for flexible wearable electronics, which are active in medical diagnosis and healthcare monitoring. Ultrahigh sensitivity, large measuring range, and high skin conformability are highly desirable for skin sensors. Here, an ultrathin flexible piezoresistive sensor with high sensitivity and wide detection range is reported based on hierarchical nanonetwork structured pressure-sensitive material and nanonetwork electrodes.
View Article and Find Full Text PDFLarge-area flexible pressure sensors are of paramount importance for various future applications, such as electronic skin, human-machine interfacing, and health-monitoring devices. Here, a self-powered and large-area integrated triboelectric sensor array (ITSA) based on coupling a triboelectric sensor array and an array chip of CD4066 through a traditional connection is reported. Enabled by a simple and cost-effective fabrication process, the size of the ITSA can be scaled up to 38 × 38 cm .
View Article and Find Full Text PDFThe rapid development of flexible and wearable electronics calls for a sustainable solution of the power supply. In recent years, the energy-harvesting triboelectric nanogenerator (TENG) has attracted increasing attentions due to its sustainability, flexibility, and versatility. However, achieving both high electric output and flexibility at the same time remains to be a challenge.
View Article and Find Full Text PDFExtremely soft and thin electrodes with high skin conformability have potential applications in wearable devices for personal healthcare. Here, a submicrometer thick, highly robust, and conformable nanonetwork epidermal electrode (NEE) is reported. Electrospinning of polyamide nanofibers and electrospraying of silver nanowires are simultaneously performed to form a homogeneously convoluted network in a nonwoven way.
View Article and Find Full Text PDFTransforming dynamic mechanical interactions into visualized luminescence represents a research frontier in the detection of tactile stimuli. Here, we report a self-powered high-resolution triboelectrification-induced electroluminescence (HR-TIEL) sensor for visualizing the contact profile and dynamic trajectory of a contact object. As dynamic interactions occur, triboelectric charges at the contact interface generate a transient electric field that excites the phosphor.
View Article and Find Full Text PDFAim: Pulmonary hypertension due to left heart failure (PH-LHF) is the most common cause of pulmonary hypertension. However, therapies for PH-LHF are lacking. Therefore, we investigated the effects and potential mechanism of dehydroepiandrosterone (DHEA) treatment in an experimental model of PH-LHF.
View Article and Find Full Text PDFFlexible piezoelectric nanogenerators have drawn considerable attention for their wide applications in harvesting ambient mechanical energy. Here, we report a flexible porous nanogenerator (FPNG) based on the dual effect of ferroelectricity and piezoelectricity. The electric output originated from the combination of the above two effects can be constructively added up, resulting in an enhancement of the electric output.
View Article and Find Full Text PDFHere we report an electrostatic-templated self-assembly (ETSA) method for arbitrarily patterning millimeter-sized polymer beads on a nanostructured surface without using an extra voltage source. A patterned electrode underneath an electrification layer generates "potential wells" of the corresponding pattern at predefined window sites, which capture and anchor the beads within the window sites by electrostatic force. Analytical calculation is combined with numerical modeling to derive the electrostatic force acting on the beads, which is in great agreement with experimentally measured values.
View Article and Find Full Text PDFA stretchable porous nanocomposite (PNC) is reported based on a hybrid of a multiwalled carbon nanotubes network and a poly(dimethylsiloxane) matrix for harvesting energy from mechanical interactions. The deformation-enabled energy-generating process makes the PNC applicable to various mechanical interactions, including pressing, stretching, bending, and twisting. It can be potentially used as an energy solution for wearable electronics.
View Article and Find Full Text PDFTriboelectrification-induced electroluminescence converts dynamic motion into light emission. Tribocharges resulting from the relative mechanical interactions between two dissimilar materials can abruptly and significantly alter the surrounding electric potential, exciting the electroluminescence of phosphor along the motion trajectory. The position, trajectory, and contour profile of a moving object can be visualized in high resolution, demonstrating applications in sensing.
View Article and Find Full Text PDFWe report a MAPbI3-based self-powered photodetector (SPPD). It has a dual sensing mechanism that relies on the joint properties of a photoelectric effect and a triboelectric effect of the perovskite material. Both the photoconductivity and the surface triboelectric density of the MAPbI3-based composite thin film are significantly altered upon solar illumination, which results in considerable reduction of the output voltage.
View Article and Find Full Text PDFSelf-powered system that is interface-free is greatly desired for area-scalable application. Here we report a self-powered electroluminescent system that consists of a triboelectric generator (TEG) and a thin-film electroluminescent (TFEL) lamp. The TEG provides high-voltage alternating electric output, which fits in well with the needs of the TFEL lamp.
View Article and Find Full Text PDFWe report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays.
View Article and Find Full Text PDF