Publications by authors named "Hua Li Chen"

Aiming at the effective remediation of antibiotic contaminants in groundwater, in-situ chemical oxidation (ISCO), using controlled release materials (CRMs) as an oxidant deliverer, has emerged as a promising technique due to their long-term effective pollutant removal performance. This study used different microstructures of mesoporous manganese oxide (MnO) and sodium persulfate as active components to fabricate CRMs. Following that, a comparative study of tetracycline (TC) degradation and the formation of reactive oxygen species (ROS) by mesoporous MnO powder and CRMs were conducted.

View Article and Find Full Text PDF
Article Synopsis
  • * A-mTiO, with its unique structure, shows excellent activity in activating PDS for the degradation of tetracycline, achieving a high mineralization rate and stable performance over more than 20 days in simulated groundwater.
  • * The research reveals that, although the reactive oxygen species (ROS) produced by A-mTiO and the controlled-release materials (CRMs) differ, they follow similar degradation pathways for tetracycline, indicating promising eco-friendly applications for treating
View Article and Find Full Text PDF

Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (NaSO) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC).

View Article and Find Full Text PDF

In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second.

View Article and Find Full Text PDF

Invasive blood pressure (IBP) measurement is common in the intensive care unit, although its association with in-hospital mortality in critically ill patients with hypertension is poorly understood. A total of 11,732 critically ill patients with hypertension from the eICU-Collaborative Research Database (eICU-CRD) were enrolled. Patients were divided into 2 groups according to whether they received IBP.

View Article and Find Full Text PDF

Oocyte apoptosis can be used as an indicator of oocyte quality and development competency. Phospholipase C (PLC) is a critical enzyme that participates in phosphoinositide metabolic regulation and performs many functions, including the regulation of reproduction. In this study, we aimed to explore whether PLC participates in the regulation of apoptosis in porcine oocytes and investigated its possible mechanism.

View Article and Find Full Text PDF

Increasing evidence suggests that there is a correlation between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD). Increased Aβ polypeptide production in AD patients would promote metabolic abnormalities, insulin signaling dysfunction and perturbations in glucose utilization, thus leading to the onset of T2D. However, the metabolic mechanisms underlying the interplay between AD and its diabetes-promoting effects are not fully elucidated.

View Article and Find Full Text PDF

Bound states in the continuum (BICs) of periodic lattices have been the recent focus in a variety of photonic nanostructures. Motivated by the recent results about the photons evolving in BIC structures, we investigate the quantum decay of entangled biphotons through disordered photonic lattices. We report that the persistence of bound states in disordered photonic lattices leads to an interplay between the BIC and disorder-induced Anderson localized states.

View Article and Find Full Text PDF

The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs.

View Article and Find Full Text PDF

Targeted identification of potentially bioactive molecules from herbal medicines is often stymied by the insufficient chromatographic separation, ubiquitous matrix interference, and pervasive isomerism. An enhanced targeted identification strategy is presented and validated by the selective identification of flavonoid O-glycosides (FOGs) from Carthamus tinctorius. It consists of four steps: (i) enhanced separation and detection by offline two-dimensional liquid chromatography/LTQ-Orbitrap MS (offline 2D-LC/LTQ-Orbitrap MS) using collision-induced dissociation (CID) and high-energy C-trap dissociation (HCD); (ii) improved identification of the major aglycones by acid hydrolysis and LC-SPE-NMR; (iii) simplified spectral elucidation by high-resolution diagnostic product ions/neutral loss filtering; and (iv) more convincing structural identification by matching an in-house library.

View Article and Find Full Text PDF

Melatonin (N-acetyl-5-methoxytryptamine) is documented as a hormone involved in the circadian regulation of physiological and neuroendocrine function in mammals. Herein, the effects of melatonin on the functions of porcine granulosa cells in vitro were investigated. Porcine granulosa cells were cultivated with variable concentrations of melatonin (0, 0.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a wide spectrum antitumor drug, but its clinical application is limited by the cardiotoxicity. Ghrelin, a multi-functional peptide hormone with metabolic regulation in energy homeostasis, plays important roles in cardiovascular protection. Now, the underlying mechanisms of ghrelin against DOX-induced cardiomyocyte apoptosis and atrophy are still not clear.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a potent available antitumor drug; however, its clinical use is limited by the cardiotoxicity. Salidroside (SLD), with strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. Now, the protection and underlying mechanisms of SLD against DOX-induced cardiotoxicity are still unknown.

View Article and Find Full Text PDF

Ghrelin is a multifunctional peptide that actively protects against cardiovascular ischemic diseases, but the underlying mechanisms are unclear. We used CoCl(2) to mimic hypoxic conditions in cardiac H9c2 cells in order to study the mechanism by which ghrelin protects cardiac myocytes against hypoxic injury by regulating the content of intracellular ROS and autophagy levels. Cell apoptosis and necrosis were evaluated by the flow cytometry assay, Hoechst staining, and LDH activity.

View Article and Find Full Text PDF

Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge.

View Article and Find Full Text PDF