In this paper, we investigate the relationship between the air pollution and tuberculosis cases and its prediction in Jiangsu, China by using the time-series analysis method, and find that the seasonal ARIMA(1, 1, 0)×(0, 1, 1) model is the preferred model for predicting the TB cases in Jiangsu, China. Furthermore, we evaluate the relationship between AQI, PM2.5, PM10 and the number of TB cases, and find that the prediction accuracy of the ARIMA model is improved by adding monthly PM2.
View Article and Find Full Text PDF-methyl-d-aspartate (NMDA) glutamate receptors (NMDARs) containing GluN2B subunits are prevalent early after birth in most brain regions in rodents. Upon synapse maturation, GluN2B is progressively removed from synapses, which affects NMDAR function and synaptic plasticity. Aberrant recruitment of GluN2B into mature synapses has been implicated in several neuropathologies that afflict adults.
View Article and Find Full Text PDFSoluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been implicated in the trafficking of postsynaptic glutamate receptors, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptors (NMDARs) that are critical for nociceptive plasticity and behavioral sensitization. However, the components of SNAREs complex involved in spinal nociceptive processing remain largely unknown. Here we found that SNAP25, syntaxin4, VAMP2 and Munc18-1 were localized at postsynaptic sites and formed the complex in the superficial lamina of spinal cord dorsal horn of rats.
View Article and Find Full Text PDFProtein phosphatase-1 (PP1) is ubiquitously distributed in the nervous system and catalyzes the dephosphorylation of numerous substrates. The specificity and efficacy of PP1-mediated dephosphorylation depend on scaffolding proteins that anchor PP1 to the close vicinity of substrates. Spinophilin is one of the scaffolding proteins which are able to direct PP1 into postsynaptic density and regulate the synaptic transmission and plasticity.
View Article and Find Full Text PDFInhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization.
View Article and Find Full Text PDFSrc Homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) interacts specifically with GluN2A subunit of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in spinal cord dorsal horn. This molecular interaction is involved in the development of GluN2A-dependent spinal sensitization of nociceptive behaviors. Intrathecal application of a GluN2A-derived polypeptide (short for pep-GluN2A) has been shown to disturb spinal GluN2A/SHP1 interaction and inhibit inflammatory pain.
View Article and Find Full Text PDFMemory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits.
View Article and Find Full Text PDFBu-Shen-Yi-Qi formula (BSYQF) could suppress chronic airway inflammation according to previous studies. However, there is relatively little direct experimental evidence to evaluate the effects of BSYQF treatment on airway remodeling in chronic asthma. Recent evidence suggests that oxidative stress is involved in airway inflammation and airway remodeling in chronic asthma.
View Article and Find Full Text PDFGlycine receptors (GlyRs) are pentameric proteins that consist of α (α1-α4) subunits and/or β subunit. In the spinal cord of adult animals, the majority of inhibitory glycinergic neurotransmission is mediated by α1 subunit-containing GlyRs. The reduced glycinergic inhibition (disinhibition) is proposed to increase the excitabilities and spontaneous activities of spinal nociceptive neurons during pathological pain.
View Article and Find Full Text PDFBackground: Accumulating evidence suggests that M2-polarized tumor-associated macrophages (TAMs) play an important role in cancer progression and metastasis, making M2 polarization of TAMs an ever more appealing target for therapeutic intervention. Astragaloside IV (AS-IV), a saponin component isolated from Astragali radix, has been reported to inhibit the invasion and metastasis of lung cancer, but its effects on TAMs during lung cancer progression have not been investigated.
Methods: Human THP-1 monocytes were induced to differentiate into M2 macrophages through treatments with IL-4, IL-13, and phorbol myristate acetate (PMA).
Previous studies have demonstrated that a large sample size is needed to reliably estimate population- and locus-specific microsatellite mutation rates. Therefore, we conducted a long-term collaboration study and performed a comprehensive analysis on the mutation characteristics of 19 autosomal short tandem repeat (STR) loci. The STR loci located on 15 of 22 autosomal chromosomes were analyzed in a total of 21,106 samples (11,468 parent-child meioses) in a Chinese population.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2010
Objective: To evaluate the therapeutic effect of transurethral enucleation of the prostate for treatment of benign prostatic hyperplasia in patients below 50 years of age.
Methods: Twelve patients with benign prostatic hyperplasia patients (mean age 48.2 years, range 46-49 years) underwent transurethral enucleation of the prostate.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
October 2009
The purpose of this study was to explore the mechanism underlying the regulation of 2-methoxyestradiol (2-ME)-induced cell apoptosis by mcl-1 and bax gene in myelodysplastic syndrome (MDS). The MUTZ-1 cells were pretreated with 2-ME; then the activity of caspases-3 was determined by fluorescent colorimetry; the mRNA expressions of apoptosis-related genes (mcl-1) and bcl-2-related X protein (bax) were determined by RT-PCR. The results showed that as compared with control, the 2-ME enhanced the activity of caspase-3 in MUTZ-1 cells in a dose-and time-dependent manners (p<0.
View Article and Find Full Text PDF