Publications by authors named "Hu-Chen Cao"

The wound microenvironment, often characterized by alkaline pH and severe hypoxia, presents significant challenges to the healing of bacterial-infected wounds. While considerable research has focused on improving wound healing through effective bacterial elimination using advanced therapeutic approaches, the importance of regulating the wound microenvironment has received less emphasis. In this work, we developed a biocompatible hydrogel, HTFC, by incorporating CaO nanoparticles (CaO NPs) into a gel formed by tannic acid (TA), hyaluronic acid (HA), and Fe.

View Article and Find Full Text PDF

A burgeoning interest has recently focused on the development of nanomedicine to integrate noninvasive photothermal therapy (PTT) and chemodynamic therapy (CDT) for synergistic tumor treatments, owing to PTT's amplification effect on CDT. However, challenges emerge as hyperthermia often induces an unwarranted overexpression of cytoprotective heat shock proteins (HSPs), thereby curtailing PTT efficacy. Additionally, the nearly neutral tumor intracellular pH (pH ≈ 7.

View Article and Find Full Text PDF

To overcome the limitations of doxorubicin (DOX) chemotherapy, nanomedicines that integrate additional photothermal therapy (PTT) and chemodynamic therapy (CDT) strategies are highlighted as promising alternatives for the treatment of malignant tumors. However, time-consuming preparation processes, biosafety concerns, and the bottlenecks of individual therapeutic modalities often limit the practical applications of this strategy. To address these issues, this work designs an oxygen economizer that additionally serves as a Fenton reaction amplifier through the simple assembly of epigallocatechin gallate (EGCG), pluronic F-127 (PF127), iron (III) ions, and doxorubicin (DOX) for the enhancement of synergistic PTT/CDT/chemotherapy.

View Article and Find Full Text PDF

The development of nanomedicines that combine photothermal therapy (PTT) with photodynamic therapy (PDT) is considered promising for cancer treatment, but still faces the challenge of enhancing tumoricidal efficiency. Fortunately, apart from the well-acknowledged effect on direct tumor cell-killing, nitric oxide (NO) is also considered to be effective for the enhancement of both PTT and PDT. However, both the low loading efficiency of NO precursor and the short half-life time and diffusion distance of NO hamper the synergistic therapeutic efficacy of NO.

View Article and Find Full Text PDF