Cancer-associated fibroblasts (CAFs) promote tumor progression through extracellular matrix (ECM) remodeling and extensive communication with other cells in tumor microenvironment. However, most CAF-targeting strategies failed in clinical trials due to the heterogeneity of CAFs. Hence, we aimed to identify the cluster of tumor-promoting CAFs, elucidate their function and determine their specific membrane markers to ensure precise targeting.
View Article and Find Full Text PDFBackground: Gastric cancer (GC) is one of the most malignant and lethal cancers worldwide. Multiple microRNAs (miRNAs) have been identified as key regulators in the progression of GC. However, the underlying pathogenesis that miRNAs govern GC malignancy remains uncertain.
View Article and Find Full Text PDFSelf-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics.
View Article and Find Full Text PDFBackground: Sepsis is a fatal condition commonly caused by Methicillin-resistant Staphylococcus aureus (MRSA) with a high death rate. Macrophages can protect the host from various microbial pathogens by recognizing and eliminating them. Earlier we found that Quaking (QKI), an RNA binding protein (RBP), was involved in differentiation and polarization of macrophages.
View Article and Find Full Text PDFP53 mutation is an important cause of chemoresistance in colorectal cancer (CRC). The investigation and identification of the downstream targets and underlying molecular mechanism of chemoresistance induced by P53 abnormalities are therefore of great clinical significance. In this study, we demonstrated and reported for the first time that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is a key functional downstream factor and therapeutic target for P53 mutation-induced chemoresistance.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation.
View Article and Find Full Text PDFBlood sampling in small laboratory animals is necessary for pharmaceutical lead optimization but can cause great harm and stress to experimental animals, which could potentially affect results. The jugular vein cannulation (JVC) in rats is a widely used model for repeated blood collection but requires adequate training of surgery skills and animal care. This article details the microsurgical procedures for establishing and maintaining a permanent JVC rat model with specific focus on the placement and sealing of the jugular cannula.
View Article and Find Full Text PDFStudies have failed to translate more than 1000 experimental treatments from bench to bedside, leaving stroke as the second leading cause of death in the world. Thrombolysis within 4.5 hours is the recommended therapy for stroke and cannot be performed until neuroimaging is used to distinguish ischemic stroke from hemorrhagic stroke.
View Article and Find Full Text PDFAs a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated.
View Article and Find Full Text PDFBackground/aims: The role of DHRS3 in human cancer remains unclear. Our study explored the role of in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.
Materials: Bisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter.
Background: The small GTPase Ran is upregulated in multiple cancers and fundamental for cancer cell survival and progression, but its significance and molecular mechanisms in colorectal cancer (CRC) remain elusive.
Methods: Ran expression was detected in CRC cell lines and tumour tissues. In vitro and in vivo functional assays were performed to examine the effects of Ran on cell proliferation and metastasis.
To study the expression and regulatory role of SOD3 in adipocytes and adipose tissue. SOD3 expression was determined in various tissues of adult C57BL/6J mice, human adipose tissue and epididymal adipose tissue, subcutaneous adipose tissue and brown adipose tissue of high-fat diet (HFD)-induced obese mice. SOD3 expression and release were evaluated in adipocytes differentiated from primary human preadipocytes and murine bone marrow-derived mesenchymal stem cells (BM-MSCs).
View Article and Find Full Text PDFCancer Prev Res (Phila)
January 2020
Periodontal ligament stem cells (PDLSCs) can repair alveolar bone defects in periodontitis in a microenvironment context-dependent manner. This study aimed to determine whether different extracellular matrices (ECMs) exert diverse effects on osteogenic differentiation of PDLSCs and accurately control alveolar bone defect repair. : The characteristics of PDLSCs and bone marrow mesenchymal stem cells (BMSCs) with respect to surface markers and multi-differentiation ability were determined.
View Article and Find Full Text PDF: Metastasis is the major reason for high recurrence rates and poor survival among patients with colorectal cancer (CRC). However, the underlying molecular mechanism of CRC metastasis is unclear. This study aimed to investigate the role of forkhead box K2 (FOXK2), one of the most markedly increased FOX genes in CRC, and the mechanism by which it is deregulated in CRC metastasis.
View Article and Find Full Text PDFSIRT5 has a wide range of functions in different cellular processes such as glycolysis, TCA cycle and antioxidant defense, which mediates lysine desuccinylation, deglutarylation and demalonylation. Recent evidences have implicated that SIRT5 is a potential suppressor of gastric cancer (GC). However, the underlying mechanism of SIRT5 in gastric cancer is still unclear.
View Article and Find Full Text PDFA correction to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAdvanced colorectal cancer (CRC) is one of the deadliest cancers, and the 5-year survival rate of patients with metastasis is extremely low. The epithelial-mesenchymal transition (EMT) is considered essential for metastatic CRC, but the fundamental molecular basis underlying this effect remains unknown. Here, we identified that O-GlcNAcylation, a unique posttranslational modification (PTM) involved in cancer metabolic reprogramming, increased the metastatic capability of CRC.
View Article and Find Full Text PDFBudd-Chiari syndrome (BCS) leads to the development of liver fibrosis in most of the cases. However, the mechanism of BCS-related liver fibrosis is unclear, and it may be largely different from that induced by chronic viral hepatitis. Hepatic stellate cell (HSC) and its specific marker CD248/endosialin are known to play an important regulatory role in the development of liver fibrosis.
View Article and Find Full Text PDFThe clinical application of GX1, an optimal gastric cancer (GC) targeting peptide, is greatly limited because its receptor in the GC vasculature is unknown. In this study, we screened the candidate receptor of GX1, transglutaminase-2(TGM2), by co-immunoprecipitation (co-IP) combined with mass spectrometry. We found that TGM2 was up-regulated in GC vascular endothelial cells and that GX1 receptor expression was suppressed correspondingly after TGM2 downregulation.
View Article and Find Full Text PDFBackground: Inflammatory bowel disease (IBD) is characterized by uncontrolled immune responses in inflamed mucosa, especially the TLR (Toll-like receptor) signaling pathway. Single Ig domain containing IL-1 receptor-related molecule (SIGIRR), a negative regulator of the TLR signaling pathway, whether had a therapeutic effect in a mouse model of IBD, and the underlying mechanism has not been investigated.
Methods: Coacervation was used to prepare chitosan/pUNO-SIGIRR nanoparticles.
Circulating tumor cells (CTCs) have emerged as promising tools for noninvasive cancer detection and prognosis. Most conventional approaches for capturing CTCs use an EpCAM-based enrichment strategy, which does not work well in cancers that show low or no expression of EpCAM, such as renal cell carcinoma (RCC). In this study, we developed a new set of cell surface markers including CA9 and CD147 as alternative CTC-capture antigens specifically designed for RCC patients.
View Article and Find Full Text PDFThe host immune response plays an important role in the pathogenesis of Helicobacter pylori infection. The aim of this study was to clarify the immune pathogenic mechanism of Helicobacter pylori infection via TLR signaling and gastric mucosal Treg cells in mice. To discover the underlying mechanism, we selectively blocked the TLR signaling pathway and subpopulations of regulatory T cells in the gastric mucosa of mice, and examined the consequences on H.
View Article and Find Full Text PDFHelicobacter pylori (H. pylori) infection plays an important part in the development of gastric carcinoma. GDDR has been confirmed as a tumor suppressor gene in gastric tumorigenesis.
View Article and Find Full Text PDF