To understand the function of multisubunit complexes it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here we demonstrate that the core modules of ATAC (ADA-Two-A-Containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription coactivator complexes, assemble co-translationally in the cytoplasm of mammalian cells.
View Article and Find Full Text PDFGene-specific transcription factors (GSTFs) control gene transcription by DNA binding and specific protein complex recruitment, which regulates promoter accessibility for transcription initiation by RNA polymerase II. Mutations in the GSTFs Suppressor of Mothers Against Decapentaplegic 2 (SMAD2) and SMAD4 are frequently associated with colon and rectal carcinomas. These proteins play an important role in bone morphogenic protein (BMP) and transforming growth factor β (TGF-β) signaling pathways controlling cell fate and proliferation.
View Article and Find Full Text PDFThe process of eukaryotic transcription initiation involves the assembly of basal transcription factor complexes on the gene promoter. The recruitment of TFIID is an early and important step in this process. Gene promoters contain distinct DNA sequence elements and are marked by the presence of post-translationally modified nucleosomes.
View Article and Find Full Text PDFBackground: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we provide the structural and thermodynamic basis for the recognition of H3K36-methylated (H3K36me) nucleosomes by the PSIP1-PWWP domain, based on extensive mutational analysis, advanced nuclear magnetic resonance (NMR), and computational approaches.
View Article and Find Full Text PDFThe mouse Btaf1 gene, an ortholog of yeast MOT1, encodes a highly conserved general transcription factor. The function of this SNF2-like ATPase has been studied mainly in yeast and human cells, which has revealed that it binds directly to TBP, forming the B-TFIID complex. This complex binds to core promoters of RNA polymerase II-transcribed genes and, of crucial importance, BTAF1-TBP interactions have been shown to affect the kinetics of TBP-promoter interactions.
View Article and Find Full Text PDFBackground: Progression through the cell cycle is accompanied by tightly controlled regulation of transcription. On one hand, a subset of genes is expressed in a cell cycle-dependent manner. On the other hand, a general inhibition of transcription occurs during mitosis.
View Article and Find Full Text PDFNat Clin Pract Endocrinol Metab
October 2006
Multiple endocrine neoplasia type 1 (MEN1) is a hereditary tumor syndrome characterized by tumors of the parathyroid glands, the pancreatic islets, the pituitary gland, the adrenal glands, as well as by neuroendocrine carcinoid tumors, often at a young age. Causal to the syndrome are germline mutations of the MEN1 tumor-suppressor gene. Identification of gene-mutation carriers has enabled presymptomatic diagnosis and treatment of MEN1-related lesions.
View Article and Find Full Text PDFThe precise, sequence-specific regulation of RNA synthesis is the primary mechanism underlying differential gene expression. This general statement applies to both prokaryotic and eukaryotic organisms, as well as to their viral pathogens. Thus, it is not surprising that genomes use a substantial portion of their protein-coding content to regulate the process of RNA synthesis.
View Article and Find Full Text PDF