Publications by authors named "Hsueh-Chung Liao"

The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution.

View Article and Find Full Text PDF

The present work demonstrates a high efficient and low cost volatile organic compounds (VOCs) sensor. Nowadays, VOCs, which are typically toxic, explosive, flammable, and an environmental hazard, are extensively used in R&D laboratories and industrial productions. Real-time and accurately monitoring the presence of harmful VOC during the usage, storage, or transport of VOCs is extremely important which protects humans and the environment from exposure in case of an accident and leakage of VOCs.

View Article and Find Full Text PDF

We demonstrate here that the nanostructure of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction (BHJ) can be tuned by inorganic nanoparticles (INPs) for enhanced solar cell performance. The self-organized nanostructural evolution of P3HT/PCBM/INPs thin films was investigated by using simultaneous grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence wide-angle X-ray scattering (GIWAXS) technique. Including INPs into P3HT/PCBM leads to (1) diffusion of PCBM molecules into aggregated PCBM clusters and (2) formation of interpenetrating networks that contain INPs which interact with amorphous P3HT polymer chains that are intercalated with PCBM molecules.

View Article and Find Full Text PDF

We have developed an improved small-angle X-ray scattering (SAXS) model and analysis methodology to quantitatively evaluate the nanostructures of a blend system. This method has been applied to resolve the various structures of self-organized poly(3-hexylthiophene)/C61-butyric acid methyl ester (P3HT/PCBM) thin active layer in a solar cell from the studies of both grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction (GIXRD). Tuning the various length scales of PCBM-related structures by a different annealing process can provide a flexible approach and better understanding to enhance the power conversion of the P3HT/PCBM solar cell.

View Article and Find Full Text PDF

We report the synthesis of N-doped TiO(2) nanofibers and high photocatalytic efficiency in generating hydrogen from ethanol-water mixtures under UV-A and UV-B irradiation. Titanate nanofibers synthesized by hydrothermal method are annealed in air and/or ammonia to achieve N-doped anatase fibers. Depending on the synthesis route, either interstitial N atoms or new N-Ti bonds appear in the lattice, resulting in slight lattice expansion as shown by XPS and HR-TEM analysis, respectively.

View Article and Find Full Text PDF

A novel photoluminescence electron beam resist made from the blend of poly(3-hexylthiophene) (P3HT) and poly(methyl methacrylate) (PMMA) has been successfully developed in this study. In order to optimize the resolution of the electron beam resist, the variations of nanophase separated morphology produced by differing blending ratios were examined carefully. Concave P3HT-rich island-like domains were observed in the thin film of the resist.

View Article and Find Full Text PDF