We generate ultrabroadband photon pairs entangled in both polarization and frequency bins through an all-waveguided Sagnac source covering the entire optical C- and L-bands (1530-1625 nm). We perform comprehensive characterization of high-fidelity states in multiple dense wavelength-division multiplexed channels, achieving full tomography of effective four-qubit systems. Additionally, leveraging the inherent high dimensionality of frequency encoding and our electro-optic measurement approach, we demonstrate the scalability of our system to higher dimensions, reconstructing states in a 36-dimensional Hilbert space consisting of two polarization qubits and two frequency-bin qutrits.
View Article and Find Full Text PDFSqueezed light is a crucial resource for continuous-variable (CV) quantum information science. Distributed multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing. To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments without coexisting classical signals, i.
View Article and Find Full Text PDFWe report the experimental generation of all four frequency-bin Bell states in a single versatile setup via successive pumping of spontaneous parametric down-conversion with single and dual spectral lines. Our scheme utilizes intensity modulation to control the pump configuration and offers turn-key generation of any desired Bell state using only off-the-shelf telecommunication equipment. We employ Bayesian inference to reconstruct the density matrices of the generated Bell states, finding fidelities ≥97% for all cases.
View Article and Find Full Text PDFThe rising demand for transmission capacity in optical networks has motivated steady interest in expansion beyond the standard C-band (1530-1565 nm) into the adjacent L-band (1565-1625 nm) for an approximate doubling of capacity in a single stroke. However, in the context of quantum networking, the L-band has yet to be fully leveraged with the suite of advanced tools for characterization and management available from classical lightwave communications. In this work, we demonstrate an ultrabroadband two-photon source integrating both C- and L-band wavelength-selective switches for complete control of spectral routing and allocation across 7.
View Article and Find Full Text PDFOwing in large part to the advent of integrated biphoton frequency combs, recent years have witnessed increased attention to quantum information processing in the frequency domain for its inherent high dimensionality and entanglement compatible with fiber-optic networks. Quantum state tomography of such states, however, has required complex and precise engineering of active frequency mixing operations, which are difficult to scale. To address these limitations, we propose a solution that employs a pulse shaper and electro-optic phase modulator to perform random operations instead of mixing in a prescribed manner.
View Article and Find Full Text PDFThe discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity >0.
View Article and Find Full Text PDFAccurate control of two-level systems is a longstanding problem in quantum mechanics. One such quantum system is the frequency-bin qubit: a single photon existing in superposition of two discrete frequency modes. In this Letter, we demonstrate fully arbitrary control of frequency-bin qubits in a quantum frequency processor for the first time.
View Article and Find Full Text PDFThe Hong-Ou-Mandel interferometer is a versatile tool for analyzing the joint properties of photon pairs, relying on a truly quantum interference effect between two-photon probability amplitudes. While the theory behind this form of two-photon interferometry is well established, the development of advanced photon sources and exotic two-photon states has highlighted the importance of quantifying precisely what information can and cannot be inferred from features in a Hong-Ou-Mandel interference trace. Here we examine Hong-Ou-Mandel interference with regard to a particular class of states, so-called quantum frequency combs, and place special emphasis on the role spectral phase plays in these measurements.
View Article and Find Full Text PDFThe Hong-Ou-Mandel (HOM) interference is one of the most fundamental quantum-mechanical effects that reveal a nonclassical behavior of single photons. Two identical photons that are incident on the input ports of an unbiased beam splitter always exit the beam splitter together from the same output port, an effect referred to as photon bunching. In this Letter, we utilize a single electro-optic phase modulator as a probabilistic frequency beam splitter, which we exploit to observe HOM interference between two photons that are in different spectral modes, yet are identical in other characteristics.
View Article and Find Full Text PDFFrequency-to-time mapping (FTM) is a technique used to mirror the spectral shape of an optical waveform in the time domain. The regular approach, based on the far-field condition, requires large amounts of dispersion for successful mapping. However, when the far-field condition is insurmountable for achieving a desired temporal profile, another technique, termed near-field FTM, can be employed to assist with the mapping.
View Article and Find Full Text PDFWe report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.
View Article and Find Full Text PDFThe phase retrieval algorithm of a frequency-resolved optical gating (FROG) is generalized to handle traces seriously distorted by group delay dispersion and non-uniform phase-matching spectra arising from the nonlinear crystal. In our proof-of-concept experiments, 15 mm thick aperiodically poled lithium niobate was employed in FROG, and successfully reconstructed chirped signal pulses were actually stretched by >5 times inside the crystal. This method is particularly promising in the measurement of weak few-cycle pulses produced by supercontinuum generation in fibers.
View Article and Find Full Text PDF